
Performance Debugging Performance Debugging
for Distributed Systems offor Distributed Systems of
Black BoxesBlack Boxes

YinghuaYinghua Wu, Haiyong XieWu, Haiyong Xie

OutlineOutline

Problem statement & goalsProblem statement & goals
Overview of our approachOverview of our approach
AlgorithmsAlgorithms

The nesting algorithm (RPC)The nesting algorithm (RPC)
The convolution algorithm (RPC or freeThe convolution algorithm (RPC or free--form)form)

Experimental resultsExperimental results
Visualization GUIVisualization GUI
Related workRelated work
ConclusionsConclusions

MotivationMotivation
Complex distributed systemsComplex distributed systems

Built from black box componentsBuilt from black box components
Heavy communications trafficHeavy communications traffic
Bottlenecks at some specific nodesBottlenecks at some specific nodes

These systems may have performance problemsThese systems may have performance problems
High or erratic latencyHigh or erratic latency
Caused by complex system interactionsCaused by complex system interactions

Isolating performance bottlenecksIsolating performance bottlenecks is hardis hard
We cannot always examine or modify system We cannot always examine or modify system
componentscomponents

We need tools to infer where bottlenecks areWe need tools to infer where bottlenecks are
Choose which black boxes to openChoose which black boxes to open

Example multiExample multi--tier systemtier system
client

web server

client

web serverweb server

database
server

database
server

application
server

application
server

authentication
server

100ms

GoalsGoals
Isolating performance bottlenecksIsolating performance bottlenecks

Find Find highhigh--impactimpact causal path patternscausal path patterns
Causal pathCausal path: series of nodes that sent/received messages. : series of nodes that sent/received messages.
Each message is caused by receipt of previous message, Each message is caused by receipt of previous message,
and Some causal paths occur many timesand Some causal paths occur many times
HighHigh--impactimpact: occurs frequently, and contributes : occurs frequently, and contributes
significantly to overall latencysignificantly to overall latency

Identify Identify highhigh--latencylatency nodes on highnodes on high--impact impact
patternspatterns

Add significant latency to these patternsAdd significant latency to these patterns

Then What should We do? Then What should We do?
-------------- Messages Trace is enoughMessages Trace is enough

The Black BoxThe Black Box

Desired propertiesDesired properties
ZeroZero--knowledge, zeroknowledge, zero--instrumentation, instrumentation,
zerozero--perturbationperturbation
ScalabilityScalability
AccuracyAccuracy
Efficiency (time and space)Efficiency (time and space)

Complex distributed
system built from

“black boxes”

Performance
bottlenecks

OutlineOutline

Problem statement & goalsProblem statement & goals
Overview of our approachOverview of our approach
AlgorithmsAlgorithms

The nesting algorithm (RPC)The nesting algorithm (RPC)
The convolution algorithm (RPC or freeThe convolution algorithm (RPC or free--form)form)

Experimental resultsExperimental results
Visualization GUIVisualization GUI
Related workRelated work
ConclusionsConclusions

Overview of ApproachOverview of Approach
Obtain traces of messages between componentsObtain traces of messages between components

Ethernet packets, middleware messages, etc.Ethernet packets, middleware messages, etc.
Collect traces as nonCollect traces as non--invasively as possibleinvasively as possible
Require very little information: Require very little information:
[timestamp, source, destination, [timestamp, source, destination, call/returncall/return, , callcall--idid]]

Analyze traces using our algorithmsAnalyze traces using our algorithms
NestingNesting: faster, more accurate, limited to RPC: faster, more accurate, limited to RPC--style systemsstyle systems
ConvolutionConvolution: works for all message: works for all message--based systemsbased systems

Visualize results and highlight highVisualize results and highlight high--impact pathsimpact paths

Recap. causal pathRecap. causal path
client

web server

client

web serverweb server

database
server

database
server

application
server

application
server

authentication
server

100ms

ChallengesChallenges
Trace contain Trace contain interleaved messagesinterleaved messages
from many causal pathsfrom many causal paths

How to identify causal paths?How to identify causal paths?
Causality trace by TimestampCausality trace by Timestamp

Want only Want only statistically significant statistically significant causal causal
pathspaths

How to differentiate significance?How to differentiate significance?
It is easy! They appear repeatedlyIt is easy! They appear repeatedly

OutlineOutline

Problem statement & goalsProblem statement & goals
Overview of our approachOverview of our approach
AlgorithmsAlgorithms

The nesting algorithm (RPC)The nesting algorithm (RPC)
The convolution algorithm (RPC or freeThe convolution algorithm (RPC or free--form)form)

Experimental resultsExperimental results
Visualization GUIVisualization GUI
Related workRelated work
ConclusionsConclusions

The nesting algorithmThe nesting algorithm
Depends on RPCDepends on RPC--style communicationstyle communication
Infers causality from Infers causality from ““nestingnesting”” relationships by relationships by
message timestampsmessage timestamps

Suppose Suppose A calls BA calls B and and B calls CB calls C before returning to Abefore returning to A
Then the Then the BB↔↔CC call is call is ““nestednested”” in the in the AA↔↔BB callcall

Uses statistical correlationUses statistical correlation

tim
e

node A node B node C

call

call

return

return

Nesting: an example causal pathNesting: an example causal path

A B

C

D

Consider this system of 4 nodes

tim
e

node A node B node C
call

return

call

call
return

node D

return

Looking for internal delays at each node

Steps of the nesting algorithmSteps of the nesting algorithm
1.1. Pair call and return Pair call and return messagesmessages

((AA⇒⇒BB, , BB⇒⇒A), (BA), (B⇒⇒D, DD, D⇒⇒B)B), (, (BB⇒⇒C, CC, C⇒⇒B)B)
2.2. Find and score all nesting relationshipsFind and score all nesting relationships

BB→→C nested in AC nested in A→→BB
BB→→D also nested in AD also nested in A→→BB

3.3. Pick best parentsPick best parents
Here: unambiguousHere: unambiguous

4.4. Reconstruct call pathsReconstruct call paths
AA→→BB→→[C ; D][C ; D]

O(mO(m) run time) run time
m = number of messagesm = number of messages

tim
e

node A node B node C
call

return

call

call
return

node D

return

PseudoPseudo--code for the nesting code for the nesting
algorithmalgorithm

Detects calls pairs and find all possible nestings of one Detects calls pairs and find all possible nestings of one
call pair in anothercall pair in another
Pick the most likely candidate for the causing call for Pick the most likely candidate for the causing call for
each call paireach call pair
Derive call paths from the causal relationships Derive call paths from the causal relationships procedure FindCallPairs

for each trace entry (t1, CALL/RET, sender A, receiver B, callid id)
case CALL:

store (t1,CALL,A,B,id) in Topencalls
case RETURN:

find matching entry (t2, CALL, B, A, id) in Topencalls
if match is found then

remove entry from Topencalls
update entry with return message timestamp t2

add entry to Tcallpairs
entry.parents := {all callpairs (t3, CALL, X, A, id2) in Topencalls with t3 < t2}

procedure ScoreNestings
for each child (B, C, t2, t3) in Tcallpairs
for each parent (A, B, t1, t4) in child.parents
scoreboard[A, B, C, t2-t1] += (1/|child.parents|)

procedure FindNestedPairs
for each child (B; C; t2; t3) in call pairs

maxscore := 0
for each p (A, B, t1, t4) in child.parents

score[p] := scoreboard[A, B, C, t2-t1]*penalty
if (score[p] > maxscore) then

maxscore := score[p]
parent := p

parent.children := parent.children U {child}

procedure FindCallPaths
initialize hash table Tpaths
for each callpair (A, B, t1, t2)
if callpair.parents = null then

root := { CreatePathNode(callpair, t1) }
if root is in Tpaths then update its latencies
else add root to Tpaths

function CreatePathNode(callpair (A, B, t1, t4), tp)
node := new node with name B
node.latency := t4 - t1
node.call_delay := t1 - tp
for each child in callpair.children
node.edges := node.edges U { CreatePathNode(child, t1)}

return node

Inferring nestingInferring nesting

−Local info not enough
−Use aggregate info
−Histograms keep track of
possible latencies

−Medium-length delay
will be selected

−Assign nesting
−Heuristic methods

tim
e

node A node B node C

An example of Parallel callsAn example of Parallel calls

t1
t2t3

t4

OutlineOutline

Problem statement & goalsProblem statement & goals
Overview of our approachOverview of our approach
AlgorithmsAlgorithms

The nesting algorithmThe nesting algorithm
The convolution algorithmThe convolution algorithm

Experimental resultsExperimental results
Visualization GUIVisualization GUI
Related workRelated work
ConclusionsConclusions

The convolution algorithmThe convolution algorithm

““Time signalTime signal”” of messages for each of messages for each
<source node, destination node><source node, destination node>

A sent message to B at times 1,2,5,6,7A sent message to B at times 1,2,5,6,7

S1(t)= A→B messages
1 2 3 4 5 6 7 time

The convolution algorithmThe convolution algorithm
Look for timeLook for time--shifted similaritiesshifted similarities

Compute Compute convolutionconvolution X(tX(t) = S) = S22(t) (t) ⊗⊗ SS11(t)(t)
Use Fast Fourier TransformsUse Fast Fourier Transforms

S1(t)
(A→B)

S2(t)
(B→C)

X(t)

Peaks in X(t) suggest
causality between

AA→→BB and BB→→CC

Time shift of a peak
indicates delay

Convolution detailsConvolution details

Time complexity: Time complexity: O(em+eVlogVO(em+eVlogV))
m = messagesm = messages
e = output edgese = output edges
V = number of time steps in traceV = number of time steps in trace

Need to choose time step size Need to choose time step size
Must be shorter than delays of interestMust be shorter than delays of interest
Too coarse: poor accuracyToo coarse: poor accuracy
Too fine: long running timeToo fine: long running time

Robust to noise in traceRobust to noise in trace

Algorithm comparisonAlgorithm comparison
NestingNesting

Looks at individual paths and then aggregatesLooks at individual paths and then aggregates
Finds rare pathsFinds rare paths
Requires Requires call/returncall/return style communicationstyle communication
Fast enough for realFast enough for real--time analysistime analysis

ConvolutionConvolution
Applicable to a broader class of systemsApplicable to a broader class of systems
Slower: more work with less informationSlower: more work with less information
May need to try different time steps to get good May need to try different time steps to get good
resultsresults
Reasonable for offReasonable for off--line analysisline analysis

Communication
style

Rare events

Level of
Trace detail

Time and space
complexity

Visualization

Nesting Algorithm Convolution Algorithm

RPC only RPC or free-form messages

Yes, but hard No

<timestamp, sender, receiver>
<timestamp, sender, receiver>

+
call/return tag

Linear space
Linear time

Linear space
Polynomial time

RPC call and return combined
More compact

Less compact

SummarizeSummarize

OutlineOutline
Problem statement & goalsProblem statement & goals
Overview of our approachOverview of our approach
AlgorithmsAlgorithms
Experimental resultsExperimental results

MaketraceMaketrace: a trace generator: a trace generator
MaketraceMaketrace web server simulationweb server simulation
Pet Store EJB tracesPet Store EJB traces
Execution costsExecution costs

Visualization GUIVisualization GUI
Related workRelated work
ConclusionsConclusions

MaketraceMaketrace
Synthetic trace generatorSynthetic trace generator
Needed for testing Needed for testing

Validate output for known inputValidate output for known input
Check corner casesCheck corner cases

Uses set of causal path templatesUses set of causal path templates
All call and return messages, with latenciesAll call and return messages, with latencies
Delays are x Delays are x ±± y seconds, Gaussian normal y seconds, Gaussian normal
distributiondistribution

Recipe to combine pathsRecipe to combine paths
Parallelism, start/stop times for each pathParallelism, start/stop times for each path
Duration of traceDuration of trace

Desired results for one traceDesired results for one trace
Causal pathsCausal paths

How oftenHow often
How much time spentHow much time spent

NodesNodes
Host/component nameHost/component name
Time spent in node and Time spent in node and
all of the nodes it callsall of the nodes it calls

EdgesEdges
Time parent waits Time parent waits
before calling childbefore calling child

Measuring Added DelayMeasuring Added Delay

Added 200msec delay Added 200msec delay
in WS2in WS2
The nesting algorithm The nesting algorithm
detects the added delay, detects the added delay,
and so does the and so does the
convolution algorithmconvolution algorithm

Results: Results: PetstorePetstore
Sample EJB applicationSample EJB application
J2EE middleware for J2EE middleware for
JavaJava

Instrumentation from Instrumentation from
StanfordStanford’’s s PinPointPinPoint
projectproject

50msec delay added in 50msec delay added in
mylist.jspmylist.jsp

Results: running timeResults: running time

Nesting

Convolution (20 ms time step)

2.9218.42,000234,036PetStore

6,301.0025.02,000234,036PetStore

23.97136.85,0002,026,658Multi-tier (long)

2.2713.8500202,520Multi-tier

0.231.55020,164Multi-tier (short)

CPU time
(sec)

Memory
(MB)

Duration
(sec)

Length
(messages)

Trace

More details and results in paper

Accuracy vs. parallelismAccuracy vs. parallelism
Increased parallelism degrades accuracy slightlyIncreased parallelism degrades accuracy slightly
ParallelismParallelism is number of paths active at same is number of paths active at same
timetime

0

20

40

60

0 100 200 300 400 500
parallelism per node

fa
ls

e
po

si
tiv

es

Other results for nesting Other results for nesting
algorithmalgorithmClock skewClock skew

Little effect on accuracy with skew Little effect on accuracy with skew ≤≤ delays of delays of
interestinterest

Drop rateDrop rate
Little effect on accuracy with drop rates Little effect on accuracy with drop rates ≤≤ 5%5%

Delay varianceDelay variance
Robust to Robust to ≤≤ 30% variance30% variance

Noise in the traceNoise in the trace
Only matters if same nodes send noiseOnly matters if same nodes send noise
Little effect on accuracy with Little effect on accuracy with ≤≤ 15% noise15% noise

Visualization GUIVisualization GUI
Goal: highlight Goal: highlight
dominant pathsdominant paths
Paths sortedPaths sorted

By frequency By frequency
By total timeBy total time

Red highlightsRed highlights
HighHigh--cost cost
nodesnodes

TimelineTimeline
Nested callsNested calls
Dominant Dominant
subcallssubcalls

Time plotsTime plots
Node timeNode time
Call delayCall delay

Related workRelated work
Systems that trace endSystems that trace end--toto--end causality via end causality via
modified middleware using modified JVM or modified middleware using modified JVM or
J2EE layersJ2EE layers

Magpie (Microsoft Research), aimed at Magpie (Microsoft Research), aimed at
performance debuggingperformance debugging
Pinpoint (Stanford/Berkeley), aimed at locating Pinpoint (Stanford/Berkeley), aimed at locating
faultsfaults
Products such as Products such as AppAssureAppAssure, , PerformaSurePerformaSure, ,
OptiBenchOptiBench

Systems that make inferences from tracesSystems that make inferences from traces
Intrusion detection (Zhang & Intrusion detection (Zhang & PaxsonPaxson, LBL) uses , LBL) uses
traces + statistics to find compromised systemstraces + statistics to find compromised systems

Future workFuture work
Automate trace gathering and Automate trace gathering and
conversionconversion
SlidingSliding--window versions of algorithmswindow versions of algorithms

Find phased behaviorFind phased behavior
Reduce memory usage of nesting Reduce memory usage of nesting
algorithmalgorithm
Improve speed of convolution algorithmImprove speed of convolution algorithm

Validate usefulness on more Validate usefulness on more
complicated systemscomplicated systems

ConclusionsConclusions
Looking for bottlenecks in black box systemsLooking for bottlenecks in black box systems
Finding causal paths is enough to find Finding causal paths is enough to find
bottlenecksbottlenecks
Algorithms to find paths in traces really workAlgorithms to find paths in traces really work

We find correct latency distributionsWe find correct latency distributions
Two very different algorithms get similar Two very different algorithms get similar
resultsresults
Passively collected traces have sufficient Passively collected traces have sufficient
informationinformation

