Performance Debugging

for Distributed Systems of
Black Boxes

Yinghua Wu, Hatyong Xie

Outline

mOverview of our approach

mAlgorithms
= The nesting algorithm (RPC)
= The convolution algorithm (RPC or free-form)

mExperimental results
mVisualization GUI
sRelated work
mConclusions

Motivation

m Complex distributed systems
= Built from black box components
= Heavy communications traffic
= Bottlenecks at some specific nodes
= These systems may have performance problems
= High or erratic latency
= Caused by complex system interactions

m Isolating performance bottlenecks is hard

= We cannot always examine or modify system
components

m We need tools to infer where bottlenecks are
= Choose which black boxes to open

Example multi-tier system

I clientl

web server web server web server

- -—

authentlcatlo
appllcatlon

! server
server n J

database database
server server

Goals

m Isolating performance bottlenecks

= Find high-impact causal path patterns

m Causal path: series of nodes that sent/received messages.
Each message is caused by receipt of previous message,
and Some causal paths occur many fimes

= High-impact: occurs frequently, and contributes
significantly to overall latency

= Identify high-latency nodes on high-impact
patterns
= Add significant latency to these patterns

Then What should We do?

The Black Box

q v N

Performance
bottlenecks

Complex distributed
system built from — v
"black boxes"

m Desired properties

» Zero-knowledge, zero-instrumentation,
zero-perturbation

= Scalability
= Accuracy
= Efficiency (time and space)

Outline

=Problem statement & goals

mAlgorithms
= The nesting algorithm (RPC)
= The convolution algorithm (RPC or free-form)

mExperimental results
mVisualization GUI
sRelated work
mConclusions

Overview of Approach

= Obtain traces of messages between components
= Ethernet packets, middleware messages, etc.
= Collect traces as non-invasively as possible
= Require very little information:

[timestamp, source, destination, call/return, call-id]

= Analyze traces using our algorithms
= Nesting: faster, more accurate, limited to RPC-style systems
= Convolution: works for all message-based systems

= Visualize results and highlight high-impact paths

Recap. causal path

I clientl

web server web server web server
G

authentlcatlo

server J

appllcatlon
server

\

database
server

database
server

Challenges

m [race contain
from many causal paths

= How Yo identify causal paths?
m Causality trace by Timestamp

= Want only causal
paths

= How to differentiate significance?
m It /s easy! They appear repeatedly

Outline

=Problem statement & goals
mOverview of our approach

= The convolution algorithm (RPC or free-form)
mExperimental results
mVisualization GUI
mRelated work
mConclusions

The nesting algorithm

= Depends on RPC-style communication

m Infers causality from “nesting” relationships by
message timestamps
= Suppose and before returning to A
= Then the call is "nested” in the call

m Uses statistical correlation

node A node B node C

call

of:11

time

return

return

Nesting: an example causal path

Consider this system of 4 nodes
Looking for internal delays at each node

node A nodeB nodeC nodeD
of-11
° o *Ca”

fime
-

* lreturn
return

Steps of the nesting algorithm

1. Pair call and return messages
= (A=B,B=A), (B=D, b=B), (B=C, C=B)
2. Find and score all nesting relationships

= B—>Cnestedin A>B node A nodeB nodeC nodeD
= B—D also nested in A>B call

3. Pick best parents ¥ cal
s Here: unambiguous £ \

4, Reconstruct call paths B greturr
= A—>B-[C; D] I 2 '

* return

O(m) run Time — l

m = number of messages

Pseudo-code for the nesting
algorithm

m Detects calls pairs and find all possible nestings of one
call pair in another

most likely candidate for the causing call for
A\

procedure FindCallPairs K \
for each trafc/
CA rocedure ScoreNestin _
Cas;iore for each child (B, C procedure FindCallPaths \
initialize hash table Tpaths

for each parent (A,
Ca?i?\dRE scorebol?ard[A, (B fqr each gallpair (A, B, t1, t2)
if ma if callpair.parents = null then _
rerl procedure FindNeste _root = {_CreatePathNode(callpqlr, tl) } _
up{ for each child (B; C; if root is in Tpaths then update its latencies
add maxscore ‘= 0 else add root to Tpaths

ent for each p (A, B, t function CreatePathNode(callpair (A, B, t1, t4), tp)

score[p] := scof node := new node with name B

if (score[p] > m node.latency :=t4 - tl
maxscore = ¢ node.call_delay :=t1 - tp
parent := p for each child in callpair.children

\@ﬂ.children ::\ node.edges := node.edges U { CreatePathNode(childy

~Jeturn node

Inferring nesting

= An example of Parallel calls

—Local info not enough
—-Use aggregate info

—Histograms keep track of
possible latencies 3 t1

-Medium-length delay TIIF
will be selected .

—Assign hesting
—Heuristic methods

node A nodeB nodeC

Outline

=Problem statement & goals
mOverview of our approach

= The nesting algorithm

-
mExperimental results
mVisualization GUI
sRelated work
mConclusions

The convolution algorithm

=" Time sighal” of messages for each
<source node, destination node>

= A sent message to B at times 1,2,5,6,7

1]

1 2 3456 7 time

S1(t)= A—>B messages

The convolution algorithm

mLook for time-shifted similarities
= Compute X(1) = S,(1) ® Sy(t)
m Use Fast Fourier Transforms

Sy(t) i ““ I””l Peaks in X(t) suggest
(B>C) A u aue., causality between

A—B and B—C

! Time shift of a peak
= - indicates delay

Convolution details

= Time complexity: O(em+eVlogV)

= m = messages

= e = output edges

=V = number of time steps in trace
=Need to choose time step size

= Must be shorter than delays of interest

= Too coarse: poor accuracy

= Too fine: long running ftime

mRobust to noise in trace

Algorithm comparison

= Nesting
= Looks at individual paths and then aggregates
= Finds rare paths
= Requires call/return style communication
= Fast enough for real-time analysis
= Convolution
= Applicable to a broader class of systems
= Slower: more work with less information

= May need to try different time steps to get good
results

= Reasonable for off-line analysis

Summarize

Nesting Algorithm Convolution Algorithm

Communication
style RPC only RPC or free-form messages
Rare events Yes, but hard No
Level of <timestamp, sender, receiver>
T detail + <timestamp, sender, receiver>

race deral call/return tag
Time and space Linear space Linear space
complexity Linear time Polynomial time
Visualization RPC call and return combined| | g compact

* More compact

Outline

= Problem statement & goals
= Overview of our approach
= Algorithms

|
|
|
|
|
m Visualization GUI
m Related work
m Conclusions

Maketrace

= Synthetic trace generator
= Needed for testing
= Validate output for known input
= Check corner cases
m Uses set of causal path templates
= All call and return messages, with latencies

= Delays are x + y seconds, Gaussian normal
distribution

m Recipe o combine paths
= Parallelism, start/stop times for each path
= Duration of trace

Desired results for one trace

= How often
= How much time spent

= Host/component name

= Time spent in hode and
all of the nodes it calls

= Time parent waits
before calling child

Measuring Added Delay

m Added 200msec delay
in WS2

m The nesting algorithm ’ 151 sce.

364x

detects the added delay,
and so does the
convolution algorithm

Results: Petstore

= Sample EJB application .:5
nJ2EE middleware for @mﬁ;
Java T
= Instrumentation from CCm=mar==r="">
Stanford's PinPoint =~
project
m50msec delay added in

mylist.jsp

Results: running time

Trace

Length
(messages)

Duration
(sec)

Memory | CPU time
(MB) (sec)

PetStore

Multi-tier (short) 20,164 o0 1.5
Multi-tier 202,520 500 13.8
Multi-tier (long) 2,026,658 5,000 136.8
PetStore 234,036 18.4

Convolution (20 ms time step)

234,036

More details and results in paper

Accuracy vs. parallelism

mIncreased parallelism degrades accuracy slightly

mParallelism is humber of paths active at same
time

60 -

40

20
0

false positives

O 100 200 300 400 500

parallelism per node
LSS

Other results for nesting
algorithm

=Little effect on accuracy with skew < delays of
interest

L]

= Little effect on accuracy with drop rates < 5%
]

= Robust to < 30% variance
]

= Only matters if same nodes send noise
= Little effect on accuracy with < 15% noise

Visualization GUI

“nwview: © ' ckrpSic

Call delay from parent

mot: 0092 sec

mot -> /petstome/category.screen Pcategory_id=FISH

/petstorejcategory.screen?category_id=FISH -> com.sun.j2ee.blueprints.waf.view.template. Temp late Se vlet
m.sun.j2ee.blueprint f.viewtemplate. TemplateSenlet = JspSemviat
IspSenlet = jftemplate.jsp
et
fbanner.jsp
ftemp late. j
lspsernie
ftemplate.jsp
s

JspSendet = fmylist.jsp
Jtemplate.jsp = JspServlet

Related work

m Systems that trace end-to-end causality via
modified middleware using modified JVM or
J2EE layers

= Magpie (Microsoft Research), aimed at
performance debugging

= Pinpoint (Stanford/Berkeley), aimed at locating
faults

= Products such as AppAssure, PerformaSure,
OptiBench

= Systems that make inferences from traces

= Intrusion detection (Zhang & Paxson, LBL) uses
traces + statistics to find compromised systems

Future work

mAutomate trace gathering and
conversion

nSliding-window versions of algorithms
= Find phased behavior

=Reduce memory usage of nesting
algorithm

= Improve speed of convolution algorithm

mValidate usefulness on more
complicated systems

Conclusions

mLooking for bottlenecks in black box systems

= Finding causal paths is enough to find
bottlenecks

m Algorithms to find paths in traces really work
= We find correct latency distributions

= Two very different algorithms get similar
results

= Passively collected traces have sufficient
information

