Reliable Multicast and Layered Multicast

12/3/2001

Review: Application Layer Multicast

- Narada
 - first builds a mesh
 - then runs DVMRP over the mesh

- Overcast
 - directly builds a tree (the non-leaf nodes are servers)
 - when connecting to the tree, a new node probes from leaf to root
Reliable Multicast: Discussion

- What are the goals of reliable multicast?

- Why is reliable multicast difficult?

Scalable Reliable Multicast (SRM) [Floyd et al. '95]

- Randomize NACKs (requests)
- All traffic including requests and repairs are multicast
- A repair can be sent by any node that heard the request
- A node suppresses its request if another node has just sent a request for the same data item
- A node suppresses a repair if another node has just sent a repair
Estimating Distances

- Every node estimates distance (in time) from every other node
 - why?
 - how?

Request Timer

- Chosen from the uniform distribution on
 \[[C_1 d_{S,A}, (C_1 + C_2) d_{S,A}] \]
 - \(A \) - node that lost the packet
 - \(S \) - source
 - \(C_1, C_2 \) - algorithm parameters
- If \(A \) receives a request before its timeout triggers, it does an exponentially backoff
 \[2^{[C_1 d_{S,A}, (C_1 + C_2) d_{S,A}]} \]
Repair Timer

- Chosen from the uniform distribution on $[D_1d_{A,B}, (D_1 + D_2)d_{A,B}]$
 - A - node that lost the packet
 - B - node that sends the repair
 - D_1, D_2 - algorithm parameters
- If B receives a repair for missing data it cancels its timer
- B does not verify whether A has received data (why?)

Chain Topology

- $C_1 = D_1 = 1, C_2 = D_2 = 0$ (why?)
- All link distances are 1

![Chain Topology Diagram]
Star Topology

- *Choose* $C_1 = D_1 = 0$ (why?)
- *Given* C_2, what is the expected number of requests, expected time to receive a repair?

Bounded Degree Tree

- Use both
 - deterministic suppression (chain topology)
 - probabilistic suppression (star topology)
- Large $C_2/C_1 \rightarrow$ fewer duplicate requests, but larger repair time
- Large $C_1 \rightarrow$ contribute to suppressing more duplicate requests
- Small $C_1 \rightarrow$ smaller repair time
- Simulation parameters: $C_1 = C_2 = 2$, $D_1 = D_2 = \log_{10} g$
Discussion: Adaptive Timers

- How would you adapt the timers?

Discussion

- How scalable is SRM?

- Some other ways you can think of to provide reliable multicast?
Remaining Issue: How Fast to Send to the Receivers?

- Why is the problem difficult?

Two Multi-rate Schemes

Destination Set Grouping (DSG) [JAZ95]
- sender sends to K groups
- sender sends to group i at g_i
- each receiver joins one group

Layered approach [Sha92, McC96]
- sender sends to K groups
- assume $g_1 < g_2 < \ldots < g_K$
- sender sends at $g_1, g_2 - g_1, \ldots, g_K - g_{K-1}$
- receivers that can receive g_i join layers 1, ..., i
Layered Multicast

- A receiver:
 - if no loss when joins layers 1 to i, try i+1;
 - if high loss rate when joins layers 1 to i, drops layer i to see the effects