Fair Packet Queueing Algorithm

Yang Richard Yang

11/7/2001

Review

- IntServ
 - service model:
 - real-time service
 - best-effort service
 - link sharing
 - reference implementation
 - control path
 - RSVP, admission control
 - data path
 - classification, scheduling

- Diffserv
Packet Scheduling

- Decide when and what packets to send on output link
 - usually implemented at output interface

Seminal Paper: Three Issues

- Fair packet queueing algorithm
- Bandwidth and delay tradeoff
- Interactions between scheduling and congestion control
Outline

- Fair packet queueing algorithm
- Bandwidth and delay tradeoff
- Interactions between scheduling and congestion control

Objective: Fair Rate

- If link congested, compute f such that
 \[\sum_i \min(r_i, f) = C \]

\[
\begin{align*}
8 & \quad \text{min}(8, 4) = 4 \\
6 & \quad \text{min}(6, 4) = 4 \\
2 & \quad \text{min}(2, 4) = 2
\end{align*}
\]
Objective: Weighted Fair Rate Computation

- Associate a weight w_i with each flow i
- If link congested, how to compute f?

Implementation: Fluid Approximation

- General Processor Share (GPS) is defined in an idealized fluid flow model
 - multiple queues can be serviced simultaneously
 - no non-preemption unit
- Real systems are packet systems
 - only one queue is served at a given time
 - packet transmission will not be preempted
- Goal
 - define packet algorithms that approximate the fluid system
 - maintain most of the important properties
Generalized Processor Share

- Red session has packets backlogged between time 0 and 10
- Other sessions have packets continuously backlogged

Approximating GPS with WFQ

- Fluid GPS system service order
- Weighted Fair Queueing (WFQ)
 - select the first packet that finishes in GPS
Implementation: Virtual Clock

- $V(t)$: virtual clock (or virtual round in this paper)
- If we serve w_i bits per round for a backlogged flow with weight w_i, how fast will $V(t)$ progress:
 \[
 \frac{d}{dt} V = \frac{C}{\sum_{j \in N_{ac}(t)} W_j}
 \]
 - where
 - $N_{ac}(t)$ - number of flows backlogged

Virtual Time Implementation of Weighted Fair Queueing

\[
\begin{align*}
V(0) &= 0 \\
S_j^{k+1} &= F_j^k & \text{if session } j \text{ backlogged} \\
S_j^{k+1} &= \max(F_j^k, V(a_j^k)) & \text{if session } j \text{ un-backlogged} \\
F_j^{k+1} &= S_j^{k+1} + \frac{L_j^k}{W_j}
\end{align*}
\]

- a_j^k - arrival time of packet k of flow j
- S_j^k - virtual starting time of packet k of flow j
- F_j^k - virtual finishing time of packet k of flow j
- L_j^k - length of packet k of flow j
System Virtual Time in GPS

Virtual Start and Finish Times

- Utilize the time the packets would start S^k_i and finish F^k_j in a fluid system

 $F^k_j = S^k_i + \frac{L^k_j}{W_j}$
Improvement

- Fluid-Flow (GPS)
- WFQ (smallest finish time first)

Outline

- Fair packet queueing algorithm
 - Bandwidth and delay tradeoff
- Interactions between scheduling and congestion control
Reduce the Delay of Low Rate Flows

Define bid B:

$$B_j = \max(F_j, V(a_j^k) - \delta)$$

Alternative: Service Curve

[Cruz '95]

The QoS measures (delay, throughput, loss, cost) depend on offered traffic, and possibly other external processes.

A service model attempts to characterize the relationship between offered traffic, delivered traffic, and possibly other external processes.
Arrival and Departure Process

Network Element

R_{in} R_{out}

$R_{in}(t)$ = arrival process
= amount of data arriving up to time t

$R_{out}(t)$ = departure process
= amount of data departing up to time t

Traffic Envelope
(Arrival Curve)

- Maximum amount of traffic that a flow can send during an interval of time t

$b(t) = Envelope$

slopemax average rate

"burstiness constraint"
Service Curve

- Assume a flow that is idle at time s and it is backlogged during the interval (s, t)
- Service curve: the minimum service received by the flow during the interval (s, t)

Big Picture

- $R_{in}(t)$
- $R_{out}(t)$
- Service curve with slope $= C$
Delay and Buffer Bounds

- $S(t) = \text{service curve}$
- $E(t) = \text{Envelope}$
- Maximum delay
- Maximum buffer

Service Curve-based Earliest Deadline (SCED)

- Packet deadline - time at which the packet would be served assuming that the flow receives no more than its service curve
- Serve packets in the increasing order of their deadlines

- Properties
 - If sum of all service curves $\leq C* t$
 - All packets will meet their deadlines modulo the transmission time of the packet of maximum length, i.e., L_{max} / C
Linear Service Curves: Example

Video packets have to wait after FTP packets.

Non-Linear Service Curves: Example

Video packets transmitted as soon as they arrive.
Outline

- Fair packet queueing algorithm
- Bandwidth and delay tradeoff
 - Interactions between scheduling and congestion control

Discussion

- Will fair queueing solve the congestion control problem?
Mixed Queueing and CC

Buffer Size: 15

Results

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Queueing Policy</th>
<th>Generic FTP</th>
<th>JK FTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput (packets)</td>
<td>FQ</td>
<td>1162</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>FCFS</td>
<td>1102</td>
<td>566</td>
</tr>
<tr>
<td>Average Roundtrip Time</td>
<td>FQ</td>
<td>2.15</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>FCFS</td>
<td>2.11</td>
<td>2.07</td>
</tr>
<tr>
<td>Retransmitted Packets</td>
<td>FQ</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FCFS</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>Dropped Packets</td>
<td>FQ</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FCFS</td>
<td>0</td>
<td>48</td>
</tr>
</tbody>
</table>