TCP-Friendly Congestion Control Algorithms

Y. Richard Yang

10/8/2001

Review: Wireless Congestion Control

- Problem
 - TCP interprets packet loss as congestion signal → so it reduces cwnd
 - Reduction in congestion window reduces throughput
- Two basic types of approaches
 - Hide wireless packet losses from TCP
 - Make TCP aware of wireless loss
- Three implementation schemes
 - Link layer proposals: hide link loss
 - local retransmission
 - FEC: reduce packet loss
 - End-to-end proposals: distinguish reasons of loss and detect multiple losses
 - SACK, ELN
 - Split-connection
TCP-friendly CC: What is the Problem?

- TCP congestion control is successful
 - One major reason for the remarkable stability of the Internet despite rapid growth in traffic, topology, and applications
 - 90-95% of current Internet traffic is TCP
- New applications are better served by a smoother bandwidth usage profile
- How to design new congestion control algorithms to share bandwidth with TCP flows?
 - Which TCP?

Evaluation of the Problem

- Is the problem important now? In the future?
- What are the risks in solving this problem?
 - In other words, what can make the problem not important?
- What make the problem difficult?
- If you can solve the problem perfectly, what should the solution look like?
 - In other words, what are the requirements?
A Classification of TCP-friendly CC Algorithms

- Binomial\((k, l)\)
 \(l < 1; k+l=1\)

- TEAR

- AIMD\((a, b)\)
 \(a = \frac{4(2b-b^2)}{3}\)
 \(b < 0.5\)

- TFRC\((6)\)

- TCP-compatible

- TCP-equivalent
 - RAP
 - TCP

Evaluation of Slow-Responsive TCP-Friendly CC

- **Concerns (the “bad”)**
 - What are the concerns, potential bad effects?
 - Did the authors evaluated the concern?
 - Is the evaluation satisfactory?

- **Benefits (the “good”)**