Experience with an Object Reputation System for Peer-to-Peer Filesharing

Ennan Zhai

(ennan.zhai@yale.edu)

Roadmap

What are the existing solutions ?

Roadmap

What are the existing solutions ?

However, there exists file pollution problem in current P2P file-sharing systems.

What is the file pollution ?

For a given file, if its meta-data description (e.g., keyword) does not match its content, we say the file is polluted.

Current P2P networks are full of polluted files [1]. Namely, pollution is a tough problem in current P2P networks.

[1] J. Liang, Y. X. R. Kumar, and K. Ross, "Pollution in p2p file sharing systems," in Proceedings of IEEE Infocom'05.

It is high possible to select the polluted files !!!

Roadmap

What are the existing solutions ?

Roadmap

Existing solutions?

Reputation-based Approaches:

* Peer-based: EigenTrust [WWW' 03], PeerTrust
[P2PEc' 03], Scrubber [SAC' 06]
* Object-based: Credence [NSDI' 06]
* Hybrid: XRep [CCS' 02], X²Rep [ACNS' 04], Hybrid
Scrubber [P2P' 07]

Roadmap

Roadmap

What are the existing solutions ?

Name	Sources	Voters
F ₁₀	$P_2 P_6$	$P_2 P_4 P_6$
F ₂₂	$P_2 P_6 P_8$	P ₂ P ₇
F ₄	P ₂ P ₄	$P_2 P_4 P_7$
F ₆	P ₁₁ P ₁₃ P ₁₄	P ₁₁

	Name	Sources	Voters
	F ₁₀	P ₂ P ₆	$P_2 P_4 P_6$
2	F ₂₂	$P_2 P_6 P_8$	P ₂ P ₇
Alice	F ₄	P ₂ P ₄	$P_2 P_4 P_7$
	F_6	P ₁₁ P ₁₃ P ₁₄	P ₁₁

Credence uses weighted averaging to compute the reputation of an object.

The # of voters who cast votes on file F

The # of voters who cast votes on file F

 $\theta = (p-ab) / \sqrt{a (1-a) b(1-b)}$

For the overlapping voting set (e.g., S) between Alice and C_i :

 $a = \frac{\# \text{ of positive votes cast by Alice on the files in S}}{\# \text{ of all the votes cast by Alice on the files in S}}$ $b = \frac{\# \text{ of positive votes cast by C}_i \text{ on the files in S}}{\# \text{ of all the votes cast by C}_i \text{ on the files in S}}$ $p = \frac{\# \text{ of positive votes cast by both Alice and C}_i \text{ on the files in S}}{\# \text{ of all the votes cast by both Alice and C}_i \text{ on the files in S}}$

Example

Current similarity mechanism cannot robustly evaluate the relationship between a client and peers having only few interests in common with the client (i.e., lack of overlapping voting sets).

Current similarity mechanism cannot robustly evaluate the relationship between a client and peers having only few interests in common with the client (i.e., lack of overlapping voting sets).

Flow-based Reputation:

$$\theta_{ac} = \theta_{ab} * \theta_{bc}$$

Current similarity mechanism cannot robustly evaluate the relationship between a client and peers having only few interests in common with the client (i.e., lack of overlapping voting sets).

Flow-based Reputation:

$$\theta_{ac} = \theta_{ab} * \theta_{bc}$$

$$Rep(F) = \frac{\sum_{i=1}^{n} V_i \cdot \theta_{(Alice,Voter_i)}}{\sum_{i=1}^{n} |\theta_{(Alice,Voter_i)}|}$$

Back to previous reputation equation

Why it works ?

	Name	Sources	Voters
	F ₁₀	P ₂ P ₆	$P_2 P_4 P_6$
2	F ₂₂	$P_2 P_6 P_8$	P ₂ P ₇
Alice	F ₄	P ₂ P ₄	$P_2 P_4 P_7$
	F_6	P ₁₁ P ₁₃ P ₁₄	P ₁₁

	Name	Sources	Voters	
	F ₁₀ = 0.8	$P_2 P_6$	$P_2 P_4 P_6$	
	F ₂₂ = 0.5	$P_2 P_6 P_8$	$P_2 P_7$	
lice	F ₄	P ₂ P ₄	$P_2 P_4 P_7$	
	F ₆	$P_{11} P_{13} P_{14}$	P ₁₁	

Name	Sources	Voters
F ₄ = 0.9	P ₂ P ₄	$P_2 P_4 P_7$
F ₁₀ = 0.8	$P_2 P_6$	$P_2 P_4 P_6$
$F_6 = 0.6$	$P_{11} P_{13} P_{14}$	P ₁₁
F ₂₂ = 0.5	$P_2 P_6 P_8$	P ₂ P ₇

Roadmap

What are the existing solutions ?

Roadmap

What are the existing solutions ?

Results

Positive and negative correlations

Results

More negative votes than positive votes

Credence has several problems:

- Cold start
- Lack of overlapping vote sets
- Collusive attacks

Credence has several problems:

- Cold start
- Lack of overlapping vote sets
- Collusive attacks

We built Green, a social network-based P2P reputation system [SIGCOMM'09 poster].

Green client is able to overcome the challenges from cold start and lack of overlapping vote sets by leveraging the information of its social networking.

Credence has several problems:

- Cold start
- Lack of overlapping vote sets
- Collusive attacks

Credence has several problems:

- Cold start
- Lack of overlapping vote sets
- Collusive attacks

We proposed Sorcery, a challenge-response mechanism based on dominant information strategy in Game Theory [P2P'09 & PPNA].

Sorcery can address the problem of strong collusion attacks in P2P networks.

Normal Attackers

Tricky Attackers

Thank you !!!

Appendix

