
Chord

A scalable peer-to-peer
look-up protocol for

internet applications

by Ion Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, Hari Balakrishnan

Thursday, October 20, 2011

Overview
 Introduction
 The Chord Algorithm

 Construction of the Chord ring
 Localization of nodes
 Node joins and stabilization
 Failure of nodes

 Applications
 Summary
 Questions

Thursday, October 20, 2011

The lookup problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data…

Client
Lookup(“title”)

?

Thursday, October 20, 2011

Routed queries
(Freenet, Chord, etc.)

N4

Publisher

Client
N6

N9

N7
N8N3

N2

N1

Lookup(“title”)

Key=“title”
Value=MP3 data…

Thursday, October 20, 2011

What is Chord?

 Problem addressed: efficient node localization
 Distributed lookup protocol
 Simplicity, provable performance, proven

correctness
 Support of just one operation: given a key,

Chord maps the key onto a node

Thursday, October 20, 2011

Chord software
 3000 lines of C++ code
 Library to be linked with the application
 provides a lookup(key) – function: yields the

IP address of the node responsible for the
key

 Notifies the node of changes in the set of
keys the node is responsible for

Thursday, October 20, 2011

Overview
 Introduction
 The Chord Algorithm

 Construction of the Chord ring
 Localization of nodes
 Node joins and Stabilization
 Failure/Departure of nodes

 Applications
 Summary
 Questions

Thursday, October 20, 2011

The Chord algorithm –
Construction of the Chord ring
 use Consistent Hash Function assigns each

node and each key an m-bit identifier using SHA
1 (Secure Hash Standard).

 m = any number big enough to make collisions
improbable

 Key identifier = SHA-1(key)
 Node identifier = SHA-1(IP address)
 Both are uniformly distributed
 Both exist in the same ID space

Thursday, October 20, 2011

The Chord algorithm –
Construction of the Chord ring

 identifiers are
arranged on a
identifier circle
modulo 2 =>
Chord ring

m

Thursday, October 20, 2011

The Chord algorithm –
Construction of the Chord ring
 a key k is assigned to

the node whose
identifier is equal to or
greater than the key‘s
identifier

 this node is called
successor(k) and is
the first node
clockwise from k.

Thursday, October 20, 2011

The Chord algorithm –
Simple node localization
// ask node n to find the successor of id
n.find_successor(id)
 if (id (n; successor])
 return successor;
 else
 // forward the query around the
 circle
 return successor.find_successor(id);

=> Number of messages linear in
the number of nodes !

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

 Additional routing information to accelerate
lookups

 Each node n contains a routing table with up
to m entries (m: number of bits of the
identifiers) => finger table

 i entry in the table at node n contains the
first node s that succeeds n by at least 2

 s = successor (n + 2)
 s is called the i finger of node n

i-1
th

th
i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Important characteristics of this scheme:
 Each node stores information about only a

small number of nodes (m)
 Each nodes knows more about nodes closely

following it than about nodes further away
 A finger table generally does not contain

enough information to directly determine the
successor of an arbitrary key k

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization
 Search in finger table

for the nodes which
most immediately
precedes id

 Invoke
find_successor
from that node

=> Number of
messages O(log N)!

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization
 Search in finger table

for the nodes which
most immediately
precedes id

 Invoke
find_successor
from that node

=> Number of
messages O(log N)!

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

 To ensure correct lookups, all successor
pointers must be up to date

 => stabilization protocol running periodically
in the background

 Updates finger tables and successor pointers

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

Stabilization protocol:
 Stabilize(): n asks its successor for its

predecessor p and decides whether p should
be n‘s successor instead (this is the case if p
recently joined the system).

 Notify(): notifies n‘s successor of its
existence, so it can change its predecessor
to n

 Fix_fingers(): updates finger tables

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

• N26 joins the system

• N26 acquires N32 as its successor

• N26 notifies N32

• N32 acquires N26 as its predecessor

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

• N26 copies keys

• N21 runs stabilize() and asks its
successor N32 for its predecessor
which is N26.

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

• N21 acquires N26 as its successor

• N21 notifies N26 of its existence

• N26 acquires N21 as predecessor

Thursday, October 20, 2011

The Chord algorithm –
Impact of node joins on lookups

 All finger table entries
are correct => O(log N)
lookups

 Successor pointers
correct, but fingers
inaccurate =>
correct but slower
lookups

Thursday, October 20, 2011

The Chord algorithm –
Impact of node joins on lookups

 Incorrect successor pointers => lookup might
fail, retry after a pause

 But still correctness!

Thursday, October 20, 2011

The Chord algorithm –
Impact of node joins on lookups

 Stabilization completed => no influence on
performance

 Only for the negligible case that a large
number of nodes joins between the target‘s
predecessor and the target, the lookup is
slightly slower

 No influence on performance as long as
fingers are adjusted faster than the network
doubles in size

Thursday, October 20, 2011

The Chord algorithm –
Failure of nodes

 Correctness relies on
correct successor
pointers

 What happens, if N14,
N21, N32 fail
simultaneously?

 How can N8 acquire
N38 as successor?

Thursday, October 20, 2011

The Chord algorithm –
Failure of nodes

 Correctness relies on
correct successor
pointers

 What happens, if N14,
N21, N32 fail
simultaneously?

 How can N8 acquire
N38 as successor?

Thursday, October 20, 2011

The Chord algorithm –
Failure of nodes

 Each node maintains a successor list of size r
 If the network is initially stable,

and every node fails with probability ½,
find_successor still finds the closest living
successor to the query key and
the expected time to execute find_succesor is
O(log N)

 Proofs are in the paper

Thursday, October 20, 2011

The Chord algorithm –
Failure of nodes

0

0.4

0.8

1.1

1.5

5 10 15 20 25 30 35 40 45 50

Fa
ile

d
Lo

ok
up

s
(P

er
ce

nt
)

Failed Nodes (Percent)

(1/2)6 is 1.6%

Massive failures have little impact

Thursday, October 20, 2011

Overview
 Introduction
 The Chord Algorithm

 Construction of the Chord ring
 Localization of nodes
 Node joins and stabilization
 Failure/Departure of nodes

 Applications
 Summary
 Questions

Thursday, October 20, 2011

Applications:
Chord-based DNS
 DNS provides a lookup service
 keys: host names values: IP addresses
 Chord could hash each host name to a key
 Chord-based DNS:

 no special root servers
 no manual management of routing information
 no naming structure
 can find objects not tied to particular machines

Thursday, October 20, 2011

Summary
 Simple, powerful protocol
 Only operation: map a key to the responsible

node
 Each node maintains information about O(log

N) other nodes
 Lookups via O(log N) messages
 Scales well with number of nodes
 Continues to function correctly despite even

major changes of the system

Thursday, October 20, 2011

Questions?

Thursday, October 20, 2011

Thanks!

Thursday, October 20, 2011

