
Yale Univ.
Ronghui Gu

Ronghui Gu

Do incentives build robustness in BitTorrent?

ronghui.gu@yale.edu

Yale Univ.
Ronghui Gu

Introduction

BitTorrent Overview

Modeling Altruism in BitTorrent

Building BitTyrant

Evaluation

Conclusion

2

Agenda

Yale Univ.
Ronghui Gu

 Free-Ride

 Consuming resources without contribution

 Fundamental problem in P2P systems

BitTorrent

 Use “Tit-for-Tat” strategy for discouraging free-riders

 Upload more download more

Question

 Can we cheat?

 Download without upload or upload less

3

MAIN IDEA

Introduction

Yale Univ.
Ronghui Gu

Contribution

 Shows BitTorrent is not robust with strategic users

 Model altruism in BitTorrent

 Upload more than necessary

BitTyrant

 A selfish and strategic BitTorrent client

 Carefully select peers and contribution rates

 Raise the download speed with the same

contribution

4

CONTRIBUTION

Introduction

Yale Univ.
Ronghui Gu

A P2P file sharing protocol

 Bulk data transfer

 Account for 40%~70% of internet traffic (Feb.2009)

 True P2P: no single server

 Tracker: keep track of active peers in the swarm

Swarm: all peers sharing a torrent

Seeds: users with a complete file

……

5

WHAT IS IT?

BitTorrent Overview

Yale Univ.
Ronghui Gu

6

How does it work(1)?

BitTorrent Overview

Torrent

file name

file size

fingerprint

url of tracker

swarm

tracker

Pieces are redistributed by peers

Yale Univ.
Ronghui Gu

Active set size

7

How does it work(2)?

BitTorrent Overview

Active set

Local

neighborhood

Swarm

Yale Univ.
Ronghui Gu

 Tit-for-Tat strategy

 Famous in game theory (Prisoners’ Dilemma)

 Do what others did to him in the last round

 Forgiveness: cooperate with a few lucky guys

 In the BitTorrent context

 Grant upload capacity to

n best uploaders + ω optimistically unchoked peers

 Active set size = n

 Equal split rate = upload capacity / (n + ω) ?

 Match same rate and difficult to be stable

 Choke (stop uploading to) peers that perform badly

8

THE STRATEGY!

BitTorrent Overview

Yale Univ.
Ronghui Gu

9

Sounds Great?

BitTorrent Overview

• A fast client with 90 total upload capacity

• Will choose top 2 uploaders and 1 unchoker

peer

received

rate sent rate

20 30

10 30

9 0

1

(capacity)
30

 For machine has LOTS of upload

 Most peers are slower, even top ones

 Pay much more than get

 For slow machines

 Have no chance to be top

 However, could get welfare

 Waste all the upload capacity

 For all peers in the active set

 Get the same reciprocation

 sent rate = equal split rate

 Why not just send at rate 10?

 For the 3rd one

 He will get paid if he sent 1 more

Top

Unchoker

Altruism

Yale Univ.
Ronghui Gu

10

OBSERVATION (1)

Modeling Altruism in BitTorrent

Measure of altruism

 The sub-liner growth suggests the unfairness (high capacity)

Yale Univ.
Ronghui Gu

11

OBSERVATION (2)

Modeling Altruism in BitTorrent

 Altruism: any upload contribution that can be withdrawn

without loss in download performance

 slow clients never

get reciprocated fast clients pay more

Yale Univ.
Ronghui Gu

12

OBSERVATION (3)

Modeling Altruism in BitTorrent

 Reciprocation probability as a function of equal split rate

 The sharp jumps due to the increase of active set size 0.6𝑟 − ω

reciprocation prob>99%

when equal rate>14 KB/s

Yale Univ.
Ronghui Gu

13

A SELFISH CLIENT!

Building BitTyrant

Based on Azureus Client :

 Most popular in traces

Main idea

 Exploit unfairness and minimize altruism

 Dynamically choose how many and which peers to

send data

Mechanisms

 Choose “best” peers

 Deviate from equal split

Yale Univ.
Ronghui Gu

14

ALGORITHM

Building BitTyrant

Maintain 𝑑𝑝 and 𝑢𝑝 of peer 𝑝

 𝑑𝑝: download performance from 𝑝

 𝑢𝑝: rate to earn reciprocation from 𝑝

Algorithm

 Rank peers by the ratio 𝑑𝑝/𝑢𝑝

 Select top ones until reach the upload capacity

Yale Univ.
Ronghui Gu

15

EXAMPLE

Building BitTyrant

• A BitTyrant client with 21 total upload capacity

peer

received

rate

required

send rate

benefit/cost

ratio

9 3 3.00

20 10 2.00

10 8 1.25

1 1.6 0.625

Sum=21

Yale Univ.
Ronghui Gu

16

SOME PROBLEM?

Building BitTyrant

Similar to knapsack problem

 It’s a greedy algorithm, not the best

 Maybe dynamic programming method is better

peer

received

rate

required

send rate

benefit/cost

ratio

20 10 2.00

15 8 1.88

12 8 1.5

A client with 17 total

upload capacity

• Greedy: 20

• Dynamic: 27

Yale Univ.
Ronghui Gu

17

REASONS?

Building BitTyrant

 Faster in large scale system

More robust to

 Estimation error

 Churn and other network conditions

Even they’re true

 Still could be improved

Yale Univ.
Ronghui Gu

18

ESTIMATION?

Building BitTyrant

 Initialization

 According to the bandwidth distribution

After each round

 If peer 𝑝 not unchoke us: 𝑢𝑝 ← 1 + δ 𝑢𝑝

 If peer 𝑝 unchoke us: 𝑑𝑝 ← observed rate

 If peer 𝑝 unchoke us for the last 𝑟 rounds:

 𝑢𝑝 ← 1 − γ 𝑢𝑝

Yale Univ.
Ronghui Gu

19

SINGLE AND MULTIPLE USERS

Evaluation

Single BitTyrant user

 The CDF of the ratio of download time

 The median of performance is a factor of 1.72

Yale Univ.
Ronghui Gu

20

SINGLE AND MULTIPLE USERS

Evaluation

Multiple BitTyrant users

 Strategic: use BitTyrant and contribute excess capacity

 The performance will be improved

 Strategic & selfish: doesn’t give back excess capacity

 The performance decreases dramatically

Yale Univ.
Ronghui Gu

21

WHAT THE PAPER HAS DONE

Conclusion

Shows BitTorrent is not robust with strategic users

Model altruism in BitTorrent

BitTyrant

 Exploit altruism in BitTorrent

 The performance of a client is improved

Yale Univ.
Ronghui Gu

QUESTIONS?

THANKS FOR YOUR TIME

Yale Univ.
Ronghui Gu

 Improved algorithm

 Select top ones until exceed the upload capacity

 Suppose there are 𝑛 peers in the active set

Allocate 𝑢𝑖 to peer 𝑖, where 𝑖 < 𝑛

Allocate the rest to peer 𝑛

23

IMPROVEMENT!

Appendix

