The Turtles Project: Design and
Implementation of Nested Virtualization

"You're very clever, young man, very clever," said
the old lady. "But it's turtles all the way down!"

Presenter: Naser AlDuaij



The Turtles Project: Nested Virtualization

* Running multiple unmodified hypervisors/VVMs
» Single level (non-nested) hypervisor is modified
» Battle against performance degradation



The Turtles Project: Motivation

Popular OS have hypervisors built in
Platforms with hypervisors embedded in f/w
_ive migration of hypervisors with their Vms

ncreased security
Testing/Debugging/Benchmarking hypervisors



The Turtles Project: Making it work

 CPU virtualization: Forward traps to upper levels
 Memory virtualization: Multi-dimensional paging
 |/O virtualization: Multi-level device assignment



The Turtles Project: Architecture

IBM Sys z: Multi-level arch. support for nested
virtualization (each hypervisor deals with guest trap)

VMX/SVM: Single-level arch. support for nested
virtualization (all traps to level 0)

Only level 0 can use VMX instructions (emulation)
VMX transitions: VMEntry/VMEXit for guest/root



The Turtles Project: Architecture

Single Two Levels Three Levels
Level

Figure 1: Nested traps with single-level architectural
support for virtualization




The Turtles Project: Multiplexing

Multiple levels support Multiplexing a single level

Figure 2: Multiplexing multiple levels of virtualization
on a single hardware-provided level of support




The Turtles Project: CPU Nested
Virtualization

e Only hypervisor (LO) runs in root mode
« VMCS/VMCB are control structures/blocks in memory

 VMCS divided into three groups:

- Guest state (Virtual CPU registers)
- Host state (Real CPU registers)
- Control Data (To inject events into VMSs)



The Turtles Project: CPU Nested
Virtualization

L2 Guest
Guest
Hypervisor

- s M) (s MY

T Host Hypewlsor

e

Figure 3: Extending VMX for nested virtualization

« VMCS 1-->2 is never loaded into the processor but
Is used by LO to emulate a VMX for L1

 VMCS 0-->2 constructed using VMCS 1-->2



The Turtles Project: CPU Nested
Virtualization

L1 uses VMX instructions to load L2

Causes VMEXxits

LO traps and emulates VMX instructions by L1
vmlaunch/vmresume to launch a [new] VM
VMEXit from L1 to LO, VMEntry from LO to L2



The Turtles Project: MMU
virtualization

* Implementations for page table translation

- Shadow-on-shadow: Slowest, useful if system does
not support 2D page tables

- Shadow on EPT: Straightforward. Support only for
single-level EPT. Still considerable overhead

- EPT on EPT:. Multi-dimensional page tables pure
HW



The Turtles Project: MMU
Virtualization

| L4 virtual ., -1 Ls wirtual -
s L= TN L — Ay
S GPT | GPT Y GPT
L physical \ | kg physical

§FTi2 .
J | Epmiz

’ L, physical
S5PT12 \

e . ™ - — . *
L, physical .' L, physical ~ . L, physical EpTOz

/ EFTOM | EFTOM /
L, physical L, physical [— sl L, physical (+

1. Shadow page tables 2. Shadow page tables 3. muli-dimensional paging
on top of shadow page on top of EPT [EFT an top of EPT)
tatles

Figure 4: MMU alternatives for nested virtualization




The Turtles Project: 1/0 Vitualization

« Emulation; Emulates a known device- Guest uses
an unmodified driver to interact with it

* Paravirtualization: Driver installed in guest
* Device Assignment: Direct access to the hardware



The Turtles Project: I/O Vitualization

DMA is complicated with guest physical addresses

IOMMU: HW component with a table of addresses
from the hypervisor

Allow multi-level virtualization by compressing
multiple tables into one

Better solution: Emulate IOMMU



The Turtles Project: Micro
Optimizations

* Optimizations to VMCS merging code (not sig.)

- Only perform a copy of VMCS if relevant values
were modified

- Copy multiple VMCS fields at once
» Exit-handling code slower due to additional exits

- Reduce number of unnecessary traps
- Direct Read/Write optimization (DRW)



The Turtles Project: Evaluation

KVM
kernbench: CPU, memory, and I/O intensive
SPECjbb: Mainly CPU intensive

Testing environments
- Bare-metal (host), single-level, nested, nested DRW



The Turtles Project: Evaluation

Kernbench

Host

Guest

Nested

Nested p pw

Run time
STD dev.

324.3
1.5

355
10

406.3
6.7

391.5
3.1

% overhead
vs. host

9.5

25.3

20.7

% overhead
vs. guest

14.5

10.3

% CPU

97

99

99

SPECjbb

Guest

Nested

Nested p pw

Score
STD dev.

83599
1230

77065
1716

78347
566

% degradati-
on vs. host

7.6

14.8

% degradati-
on vs. guest

7.8

% CPU

100

100

100

Table 2: kernbench and SPEC jbb results

Benchmark

% overhead vs. single-level guest

kernbench
SPECjbb

14.98
8.85

MNormalized CPU Cycles

Table 3: VMware Server as a guest hypervisor

Figure 5: CPU cycle distribution




The Turtles Project: Evaluation

Figure 6: Cycle costs of handling different types of exits




The Turtles Project: /O Evaluation

B throughput (Mbps)
O =c

£
=
5
£
D;J:I
-
£

.5}4;} &,
Yt B
P *?4'
E—‘t;; 0 by 'E.";' Zﬁo
U &y, ‘ar "’a.-
Gy Cyp gy Cpp - ‘%

Figure 7: Performance of netperf in various setups




The Turtles Project: I/O Evaluation

Throughput (Mbps)

LO (bare metal) —+—
L2 (direct/direct) --»--
L2 (directiirtio) --#--

128
Message size (netperf -m)

Figure 8: Performance of netperf with interrupt-less
network driver




The Turtles Project: MMU Evaluation —
Page faults cause the exits

B Shadow on EFT
O Multi—dimensional paging

kernbench specjbb netperf

Figure 9: Impact of multi-dimensional paging



The Turtles Project: Evaluation
(Running exits only)

3
.
-
o
o

e, e, e
d, midn g tdn Pl td o
J“'E.i'; f"-ia-;;;‘;?.r; Iaﬁ'ﬁg;‘?tr feﬂﬁ';;;.j:_:‘.i‘;
5 g 33, 33,
' "-E'J ~
al 3

Figure 10: CPU cycle distribution for cpuid



The Turtles Project: Cost of a nested
exit

. Lo executes a cpuid instruction
2. CPU traps and switches to root mode Lo
3. Lp switches state from running Lo to running L
4. CPU switches to guest mode L;
. L1 modifies VMCS1_.9
repeat n times:

(a) L accesses VMCS1_.o

(b) CPU traps and switches to root mode L

(¢c) Lpemulates VMCS;_.2 access and resumes L;
(d) CPU switches to guest mode L,

6. L1 emulates cpuid for Lo

7. L4 executes a resume of Lo

8. CPU traps and switches to root mode L

9. Ly switches state from running L to running Lo
10. CPU switches to guest mode L,




The Turtles Project: Other
performance issues

* Virtualization APl improvements
* Traps occurring on a core are handled by it

» Cache pollution when switching from guest-
hypervisor



The Turtles Project

Questions?




