

The Turtles Project: Design and
Implementation of Nested Virtualization

"You're very clever, young man, very clever," said
the old lady. "But it's turtles all the way down!"

Presenter: Naser AlDuaij

The Turtles Project: Nested Virtualization

● Running multiple unmodified hypervisors/VMs
● Single level (non-nested) hypervisor is modified
● Battle against performance degradation

The Turtles Project: Motivation

● Popular OS have hypervisors built in
● Platforms with hypervisors embedded in f/w
● Live migration of hypervisors with their Vms
● Increased security
● Testing/Debugging/Benchmarking hypervisors

The Turtles Project: Making it work

● CPU virtualization: Forward traps to upper levels
● Memory virtualization: Multi-dimensional paging
● I/O virtualization: Multi-level device assignment

The Turtles Project: Architecture

● IBM Sys z: Multi-level arch. support for nested
virtualization (each hypervisor deals with guest trap)

● VMX/SVM: Single-level arch. support for nested
virtualization (all traps to level 0)

● Only level 0 can use VMX instructions (emulation)
● VMX transitions: VMEntry/VMExit for guest/root

The Turtles Project: Architecture

The Turtles Project: Multiplexing

The Turtles Project: CPU Nested
Virtualization

● Only hypervisor (L0) runs in root mode
● VMCS/VMCB are control structures/blocks in memory
● VMCS divided into three groups:

– Guest state (Virtual CPU registers)

– Host state (Real CPU registers)

– Control Data (To inject events into VMs)

The Turtles Project: CPU Nested
Virtualization

● VMCS 1-->2 is never loaded into the processor but
is used by L0 to emulate a VMX for L1

● VMCS 0-->2 constructed using VMCS 1-->2

The Turtles Project: CPU Nested
Virtualization

● L1 uses VMX instructions to load L2
● Causes VMExits
● L0 traps and emulates VMX instructions by L1
● vmlaunch/vmresume to launch a [new] VM
● VMExit from L1 to L0, VMEntry from L0 to L2

The Turtles Project: MMU
virtualization

● Implementations for page table translation
– Shadow-on-shadow: Slowest, useful if system does

not support 2D page tables

– Shadow on EPT: Straightforward. Support only for
single-level EPT. Still considerable overhead

– EPT on EPT: Multi-dimensional page tables pure
HW

The Turtles Project: MMU
Virtualization

The Turtles Project: I/O Vitualization

● Emulation: Emulates a known device- Guest uses
an unmodified driver to interact with it

● Paravirtualization: Driver installed in guest
● Device Assignment: Direct access to the hardware

The Turtles Project: I/O Vitualization

● DMA is complicated with guest physical addresses
● IOMMU: HW component with a table of addresses

from the hypervisor
● Allow multi-level virtualization by compressing

multiple tables into one
● Better solution: Emulate IOMMU

The Turtles Project: Micro
Optimizations

● Optimizations to VMCS merging code (not sig.)

– Only perform a copy of VMCS if relevant values
were modified

– Copy multiple VMCS fields at once
● Exit-handling code slower due to additional exits

– Reduce number of unnecessary traps
– Direct Read/Write optimization (DRW)

The Turtles Project: Evaluation

● KVM
● kernbench: CPU, memory, and I/O intensive
● SPECjbb: Mainly CPU intensive
● Testing environments

– Bare-metal (host), single-level, nested, nested DRW

The Turtles Project: Evaluation

The Turtles Project: Evaluation

The Turtles Project: I/O Evaluation

The Turtles Project: I/O Evaluation

The Turtles Project: MMU Evaluation –
Page faults cause the exits

The Turtles Project: Evaluation
(Running exits only)

The Turtles Project: Cost of a nested
exit

The Turtles Project: Other
performance issues

● Virtualization API improvements
● Traps occurring on a core are handled by it
● Cache pollution when switching from guest-

hypervisor

The Turtles Project

Questions?

