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Is k/vTable enough?

• Replace put-get pairs to atomic ops

• Improving locality

• Load Balancing

• Rapid and Reliable Checkpoint
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Expressing Locality

• Reduce remote read (get)

• Co-locate a kernel execution with some 
table partitions

• Co-locate partitions of different tables 
(with same partition id)
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Application Default input size Maximum input size

PageRank 100M pages 1B pages
k-means 25M points, 100 clusters 1B points, 100 clusters
n-body 100K points 10M points
Matrix Multiply edge size = 2500 edge size = 6000

Figure 5: Application input sizes

8 16 32 64
Workers

0

2

4

6

8

Sp
ee

du
p

K-Means
N-Body
Matrix Multiply
PageRank
Ideal

Figure 6: Scaling performance (fixed default input size)

extract the distributions for the number of pages in each
site and the ratio of intra/inter-site links. We generate a
web graph of any size by sampling from the site size dis-
tribution until the desired number of pages is reached;
outgoing links are then generated for each page in a site
based on the distribution of the ratio of intra/inter-site
links. For other applications, we use randomly generated
inputs.

6.2 Scaling Performance
Figure 6 shows application speedup as the number of
workers (N) increases from 8 to 64 for the default input
size. All applications are CPU-bound and exhibit good
speedup with increasing N. Ideally, all applications (ex-
cept for PageRank) have perfectly balanced table par-
titions and should achieve linear speedup. However, to
have reasonable running time at N=8, we choose a rela-
tively small default input size. Thus, as N increases to
64, Piccolo’s overhead is no longer negligible relative
to applications’ own computation (e.g. k-means finishes
each iteration in 1.4 seconds at N=64), resulting in 20%
less than ideal speedup. PageRank’s table partitions are
not balanced and work stealing becomes important for its
scaling (see § 6.5).

We also evaluate how applications scale with increas-
ing input size by adjusting input size to keep the amount
of computation per worker fixed with increasing N. We
scale the input size linearly with N for PageRank and k-
means. For matrix multiplication, the edge size increases
as O(N1/3). We do not show results for n-body because it
is difficult to scale input size to ensure a fixed amount of
computation per worker. For these experiments, the ideal
scaling has constant running time as input size increases
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Figure 7: Scaling input size.
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Figure 8: Scaling input size on EC2.

with N. As Figure 7 shows, the achieved scaling for all
applications is within 20% of the ideal number.

6.3 EC2
We investigated how Piccolo scales with a larger number
of machines using 100 EC2 instances. Figure 8 shows
the scaling of PageRank and k-means on EC2 as we in-
crease their input size with N. We were somewhat sur-
prised to see that the resulting scaling on EC2 is bet-
ter than achieved on our small local testbed. Our local
testbed’s CPU performance exhibited quite some vari-
ability, impacting scaling. After further investigation, we
believe the source for such variability is likely due to dy-
namic CPU frequency scaling.

At N=200, PageRank finishes in 70 seconds for a 1B
page link graph. On a similar sized graph (900M pages),
our local testbed achieves comparable performance ( 80
seconds) with many fewer workers (N=64), due to the
higher performing cores on our local testbed.

6.4 Comparison with Other Frameworks
Comparison with Hadoop: We implemented PageRank
and k-means in Hadoop to compare their performance
against that of Piccolo. The rest of our applications, in-
cluding the distributed web crawler, n-body and matrix
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extract the distributions for the number of pages in each
site and the ratio of intra/inter-site links. We generate a
web graph of any size by sampling from the site size dis-
tribution until the desired number of pages is reached;
outgoing links are then generated for each page in a site
based on the distribution of the ratio of intra/inter-site
links. For other applications, we use randomly generated
inputs.

6.2 Scaling Performance
Figure 6 shows application speedup as the number of
workers (N) increases from 8 to 64 for the default input
size. All applications are CPU-bound and exhibit good
speedup with increasing N. Ideally, all applications (ex-
cept for PageRank) have perfectly balanced table par-
titions and should achieve linear speedup. However, to
have reasonable running time at N=8, we choose a rela-
tively small default input size. Thus, as N increases to
64, Piccolo’s overhead is no longer negligible relative
to applications’ own computation (e.g. k-means finishes
each iteration in 1.4 seconds at N=64), resulting in 20%
less than ideal speedup. PageRank’s table partitions are
not balanced and work stealing becomes important for its
scaling (see § 6.5).

We also evaluate how applications scale with increas-
ing input size by adjusting input size to keep the amount
of computation per worker fixed with increasing N. We
scale the input size linearly with N for PageRank and k-
means. For matrix multiplication, the edge size increases
as O(N1/3). We do not show results for n-body because it
is difficult to scale input size to ensure a fixed amount of
computation per worker. For these experiments, the ideal
scaling has constant running time as input size increases
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with N. As Figure 7 shows, the achieved scaling for all
applications is within 20% of the ideal number.

6.3 EC2
We investigated how Piccolo scales with a larger number
of machines using 100 EC2 instances. Figure 8 shows
the scaling of PageRank and k-means on EC2 as we in-
crease their input size with N. We were somewhat sur-
prised to see that the resulting scaling on EC2 is bet-
ter than achieved on our small local testbed. Our local
testbed’s CPU performance exhibited quite some vari-
ability, impacting scaling. After further investigation, we
believe the source for such variability is likely due to dy-
namic CPU frequency scaling.

At N=200, PageRank finishes in 70 seconds for a 1B
page link graph. On a similar sized graph (900M pages),
our local testbed achieves comparable performance ( 80
seconds) with many fewer workers (N=64), due to the
higher performing cores on our local testbed.

6.4 Comparison with Other Frameworks
Comparison with Hadoop: We implemented PageRank
and k-means in Hadoop to compare their performance
against that of Piccolo. The rest of our applications, in-
cluding the distributed web crawler, n-body and matrix
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Application Default input size Maximum input size

PageRank 100M pages 1B pages
k-means 25M points, 100 clusters 1B points, 100 clusters
n-body 100K points 10M points
Matrix Multiply edge size = 2500 edge size = 6000
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extract the distributions for the number of pages in each
site and the ratio of intra/inter-site links. We generate a
web graph of any size by sampling from the site size dis-
tribution until the desired number of pages is reached;
outgoing links are then generated for each page in a site
based on the distribution of the ratio of intra/inter-site
links. For other applications, we use randomly generated
inputs.

6.2 Scaling Performance
Figure 6 shows application speedup as the number of
workers (N) increases from 8 to 64 for the default input
size. All applications are CPU-bound and exhibit good
speedup with increasing N. Ideally, all applications (ex-
cept for PageRank) have perfectly balanced table par-
titions and should achieve linear speedup. However, to
have reasonable running time at N=8, we choose a rela-
tively small default input size. Thus, as N increases to
64, Piccolo’s overhead is no longer negligible relative
to applications’ own computation (e.g. k-means finishes
each iteration in 1.4 seconds at N=64), resulting in 20%
less than ideal speedup. PageRank’s table partitions are
not balanced and work stealing becomes important for its
scaling (see § 6.5).

We also evaluate how applications scale with increas-
ing input size by adjusting input size to keep the amount
of computation per worker fixed with increasing N. We
scale the input size linearly with N for PageRank and k-
means. For matrix multiplication, the edge size increases
as O(N1/3). We do not show results for n-body because it
is difficult to scale input size to ensure a fixed amount of
computation per worker. For these experiments, the ideal
scaling has constant running time as input size increases
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with N. As Figure 7 shows, the achieved scaling for all
applications is within 20% of the ideal number.

6.3 EC2
We investigated how Piccolo scales with a larger number
of machines using 100 EC2 instances. Figure 8 shows
the scaling of PageRank and k-means on EC2 as we in-
crease their input size with N. We were somewhat sur-
prised to see that the resulting scaling on EC2 is bet-
ter than achieved on our small local testbed. Our local
testbed’s CPU performance exhibited quite some vari-
ability, impacting scaling. After further investigation, we
believe the source for such variability is likely due to dy-
namic CPU frequency scaling.

At N=200, PageRank finishes in 70 seconds for a 1B
page link graph. On a similar sized graph (900M pages),
our local testbed achieves comparable performance ( 80
seconds) with many fewer workers (N=64), due to the
higher performing cores on our local testbed.

6.4 Comparison with Other Frameworks
Comparison with Hadoop: We implemented PageRank
and k-means in Hadoop to compare their performance
against that of Piccolo. The rest of our applications, in-
cluding the distributed web crawler, n-body and matrix
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multiplication, do not have any straightforward imple-
mentation with Hadoop’s data-flow model.

For the Hadoop implementation of PageRank, as with
Piccolo, we partition the input link graph by site. Dur-
ing execution, each map task has locality with the parti-
tion of graph it is operating on. Mappers join the graph
and PageRank score inputs, and use a combiner to aggre-
gate partial results. Our Hadoop k-means implementation
is highly optimized. Each mapper fetches all 100 cen-
troids from the previous iteration via Hadoop File Sys-
tem (HDFS), computes the cluster assignment of each
point in its input stream, and uses a local hash map to ag-
gregate the updates for each cluster. As a result, a reducer
only needs to aggregate one update from each mapper to
generate the new centroid.

We made extensive efforts to optimize the perfor-
mance of PageRank and k-means on Hadoop including
changes to Hadoop itself. Our optimizations include us-
ing raw memory comparisons, using primitive types to
avoid Java’s boxing and unboxing overhead, disabling
checksumming, improving Hadoop’s join implementa-
tion etc. Figure 9 shows the running time of Piccolo
and Hadoop using the default input size. Piccolo signif-
icantly outperforms Hadoop on both benchmarks (11×
for PageRank and 4× for k-means with N=64). The
performance difference between Hadoop and Piccolo is
smaller for k-means because of our optimized k-means
implementation; the structure of PageRank does not ad-
mit a similar optimization.

Although we expected to see some performance dif-
ference because Hadoop is implemented in Java while
Piccolo in C++, the order of magnitude difference came
as a surprise. We profiled the PageRank implementation
on Hadoop to find the contributing factors. The leading
causes for the slowdown are: (1) sorting keys in the map
phase (2) serializing and de-serializing data streams and
(3) reading and writing to HDFS. Key sorting alone ac-
counted for nearly 50% of the runtime in the PageR-
ank benchmark, and serialization another 15%. In con-
trast, with Piccolo, the need for (1) is eliminated and
the overhead associated with (2) and (3) is greatly re-
duced. PageRank rank values are stored in memory and
are available across iterations without being serialized to
a distributed file system. In addition, as most outgoing
links point to other pages at the same site, a kernel in-
stance ends up performing most updates directly to lo-
cally stored table data, thereby avoiding serialization for
those updates entirely.

Comparison with MPI: We compared the the perfor-
mance of matrix multiplication using Piccolo to a third-
party MPI-based implementation [2]. The MPI version
uses Cannon’s algorithm for blocked matrix multiplica-
tion and uses MPI specific communication primitives to
handle data broadcast and the simultaneous sending and
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Figure 9: Per-iteration running time of PageRank and k-means
in Hadoop and Piccolo (fixed default input size).
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Figure 10: Runtime of matrix multiply, scaled relative to MPI.

receiving of data. For Piccolo, we implemented the naı̈ve
blocked multiplication algorithm, using our distributed
tables to handle the communication of matrix state. As
Piccolo relies on MPI primitives for communication, we
do not expect to see performance advantage, but are
more interested in quantifying the amount of overhead
incurred.

Figure 10 shows that the running time of the Piccolo
implementation is no more than 10% of the MPI imple-
mentation. We were surprised to see that our Piccolo im-
plementation out-performed the MPI version in exper-
iments with more workers. Upon inspection, we found
that this was due to slight performance differences be-
tween machines in our cluster; as the MPI implementa-
tion has many more synchronization points than that of
Piccolo, it is forced to wait for slower nodes to catch up.

6.5 Work Stealing and Slow Machines
The PageRank benchmark provides a good basis for test-
ing the effect of work stealing because the web graph par-
titions have highly variable sizes: the largest partition for
the 900M-page graph is 5 times the size of the smallest.
Using the same benchmark, we also tested how perfor-
mance changed when one worker was operating slower
then the rest. To do so, we ran a CPU-intensive program
on one core that resulted in the worker bound to that core
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multiplication, do not have any straightforward imple-
mentation with Hadoop’s data-flow model.

For the Hadoop implementation of PageRank, as with
Piccolo, we partition the input link graph by site. Dur-
ing execution, each map task has locality with the parti-
tion of graph it is operating on. Mappers join the graph
and PageRank score inputs, and use a combiner to aggre-
gate partial results. Our Hadoop k-means implementation
is highly optimized. Each mapper fetches all 100 cen-
troids from the previous iteration via Hadoop File Sys-
tem (HDFS), computes the cluster assignment of each
point in its input stream, and uses a local hash map to ag-
gregate the updates for each cluster. As a result, a reducer
only needs to aggregate one update from each mapper to
generate the new centroid.

We made extensive efforts to optimize the perfor-
mance of PageRank and k-means on Hadoop including
changes to Hadoop itself. Our optimizations include us-
ing raw memory comparisons, using primitive types to
avoid Java’s boxing and unboxing overhead, disabling
checksumming, improving Hadoop’s join implementa-
tion etc. Figure 9 shows the running time of Piccolo
and Hadoop using the default input size. Piccolo signif-
icantly outperforms Hadoop on both benchmarks (11×
for PageRank and 4× for k-means with N=64). The
performance difference between Hadoop and Piccolo is
smaller for k-means because of our optimized k-means
implementation; the structure of PageRank does not ad-
mit a similar optimization.

Although we expected to see some performance dif-
ference because Hadoop is implemented in Java while
Piccolo in C++, the order of magnitude difference came
as a surprise. We profiled the PageRank implementation
on Hadoop to find the contributing factors. The leading
causes for the slowdown are: (1) sorting keys in the map
phase (2) serializing and de-serializing data streams and
(3) reading and writing to HDFS. Key sorting alone ac-
counted for nearly 50% of the runtime in the PageR-
ank benchmark, and serialization another 15%. In con-
trast, with Piccolo, the need for (1) is eliminated and
the overhead associated with (2) and (3) is greatly re-
duced. PageRank rank values are stored in memory and
are available across iterations without being serialized to
a distributed file system. In addition, as most outgoing
links point to other pages at the same site, a kernel in-
stance ends up performing most updates directly to lo-
cally stored table data, thereby avoiding serialization for
those updates entirely.

Comparison with MPI: We compared the the perfor-
mance of matrix multiplication using Piccolo to a third-
party MPI-based implementation [2]. The MPI version
uses Cannon’s algorithm for blocked matrix multiplica-
tion and uses MPI specific communication primitives to
handle data broadcast and the simultaneous sending and
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receiving of data. For Piccolo, we implemented the naı̈ve
blocked multiplication algorithm, using our distributed
tables to handle the communication of matrix state. As
Piccolo relies on MPI primitives for communication, we
do not expect to see performance advantage, but are
more interested in quantifying the amount of overhead
incurred.

Figure 10 shows that the running time of the Piccolo
implementation is no more than 10% of the MPI imple-
mentation. We were surprised to see that our Piccolo im-
plementation out-performed the MPI version in exper-
iments with more workers. Upon inspection, we found
that this was due to slight performance differences be-
tween machines in our cluster; as the MPI implementa-
tion has many more synchronization points than that of
Piccolo, it is forced to wait for slower nodes to catch up.

6.5 Work Stealing and Slow Machines
The PageRank benchmark provides a good basis for test-
ing the effect of work stealing because the web graph par-
titions have highly variable sizes: the largest partition for
the 900M-page graph is 5 times the size of the smallest.
Using the same benchmark, we also tested how perfor-
mance changed when one worker was operating slower
then the rest. To do so, we ran a CPU-intensive program
on one core that resulted in the worker bound to that core
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Figure 11: Effect of Work Stealing and Slow Workers

having only 50% of the CPU time of the other workers.
The results of these tests are shown in Figure 11. Work

stealing improves running time by 10% when all ma-
chines are operating normally. The improvement is due
to the imbalance in the input partition sizes - when run
without work stealing, the computation waits longer for
the workers processing more data to catch up.

The effect of slow workers on the computation is more
dramatic. With work-stealing disabled, the runtime is
nearly double that of the normal computation, as each
iteration must wait for the slowest worker to complete
all assigned tasks. Enabling work stealing improves the
situation dramatically - the computation time is reduced
to less then 5% over that of the non-slow case.

6.6 Checkpointing
We evaluated the checkpointing overhead using the
PageRank, k-means and n-body problems. Compared to
the other problems, PageRank has a larger table that
needs to be checkpointed, making it a more demand-
ing test of checkpoint/restore performance. In our ex-
periment, each worker wrote its checkpointed table par-
titions to the local disk. Figure 12 shows the runtime
when checkpointing is enabled relative to when there
is no checkpointing. For the naı̈ve synchronous check-
pointing strategy, the master starts checkpointing only
after all workers have finished. For the optimized strat-
egy, the master initiates the checkpoint as soon as one of
the workers has finished. As the figure shows, overhead
of the optimized checkpointing strategy is quite negligi-
ble (∼2%) and the optimization of starting checkpointing
early results in significant reduction of overhead for the
larger PageRank checkpoint.

Limitations of global checkpoint and restore: The
global nature of Piccolo’s failure recovery mechanism
raises the question of scalability. As the of a cluster in-
creases, failure becomes more frequent; this causes more
frequent checkpointing and restoration which consume a
larger fraction of the overall computation time. While we
lacked the machine resources to directly test the perfor-
mance of Piccolo on thousands of machines, we estimate
scalability limit of Piccolo’s checkpointing mechanism
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Figure 12: Checkpoint overhead. Per-iteration runtime is scaled
relative to without checkpointing.
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Figure 13: Expected scaling for large clusters.

based on expected machine uptime.
We consider a hypothetical cluster of machines with

16GB of RAM and 4 disk drives. We measured the time
taken to checkpoint and restore such a machine in the
“worst case” - a computation whose table state uses all
available system memory. We estimate the fraction of
time a Piccolo computation would spend working pro-
ductively (not in a checkpoint or restore state), for vary-
ing numbers of machines and failure rates. In our model,
we assume that machine failures arrive at a constant in-
terval defined by the failure rate and the number of ma-
chines in a cluster. While this is a simplification of real-
life failure behavior, it is a worst-case scenario for the
restore mechanism, and as such provides a useful lower
bound. The expected efficiency based on our model is
shown in Figure 13. For well maintained data-centers
that we are familiar with, the average machine uptime is
typically around 1 year. For these data-centers, the global
checkpointing mechanism can efficiently scale up to a
few thousand machines.

6.7 Distributed Crawler
We evaluated our distributed crawler implementation us-
ing various numbers of workers. The URL table was ini-
tialized with a seed set of 1000 URLs. At the end of a 30
minutes run of the experiment, we measured the num-
ber of pages crawled and bytes downloaded. Figure 14
shows the crawler’s web page download throughput in
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• Log-based scalable failure handling

• More user-defined accumulator per table

• Distributed as Parallel
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