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PLAN FOR TODAY 

 Facebook and Photos 
 Why a new system was needed? 

  Old system and issues faced by Facebook 

 Haystack Design 
 Evaluation 
 Q&A 



FACEBOOK & PHOTOS IN NUMBERS* 

 So far 65 billion photos uploaded 
  Biggest photo sharing website in the world 

 One billion new photos uploaded each week 
  ~60 terabytes of data 

 One million images per second at peak 
 For each photo FB generates and stores four 

images  
  >260 billion images  
  > 20 petabytes of data 

*As of 2010  



HOW FACEBOOK PHOTOS ARE USED? 

 Profile pictures and pictures recently uploaded 
  Very frequently accessed right after being uploaded 
  Likely to be accessed by different users 
  More likely to be deleted 
  Likely to be cached 

 Album photos and older photos 
  Less popular but still frequently accessed 
  Often requested in a sequence by the same user 
  So called ‘long tail’ 
  Likely not to be in cache and to be retrieved from the 

storage hosts 
  So… Why not to cache all of the photos? 



TYPICAL DESIGN 

1.  Browser sends an HTTP request 
2.  URL for the browser to render 
3.  For each image there is a URL directing the browser to a 

location from which to download the data: for popular sites 
this URL often points to a CDN (Content Delivery Network): 
-  If the CDN has it, it responds immediately 
-  If not, CDN examines the URL and retrieves the photo from site 

storage system and updates its cached data 



FACEBOOK’S OLD NFS-BASED DESIGN  



OLD NFS-BASED DESIGN 

 Each photo stored in its own file on a set of 
commercial NAS-appliances 

 Photo Store Severs (PSS) mount all volumes 
exported by NAS appliances over NFS 

 PSS process HTTP requests for images: 
  Extracts the volume and full path to the file from an 

image’s URL 
  Reads the data over NFS 
  Returns the result to CDN 

 Thousands of files stored in each directory of 
NFS volumes 
  Excessive directory metadata 



OLD DESIGN’S ISSUES 

 Excessive number of disk operations because of 
metadata lookups  

 Most of metadata not used for photos 
  Waste of storage capacity 
  Requires disk read operations to find the file itself 

 Several (~10) disk operations necessary to read a 
single photo 

 The key problem: disk operations 



FIRST FIX TO REDUCE DISK OPERATIONS 

 Reduce directory sizes to hundreds of images per 
directory 

 ~3 disk operations per image 
  (1) read the directory metadata into memory, (2) load the 

inode, (3) read the file contents 

SECOND FIX 

 Let PSS explicitly cache file handles returned by NAS 
 Only a minor improvement 
 Focusing only on caching has limited impact  



FINALLY… THE HAYSTACK! 

 No viable solution based on existing systems 
  Existing systems lack the ‘right’ RAM-to-disk ratio 
  Right ratio? Enough main memory to hold all of the 

filesystem metadata? 
  One photo corresponds to one file and each file 

requires at least one inode, which is hundreds of 
bytes large… Do the math. 

 Facebook decided to build their own storage 
system 
  (not-too) surprising 



HAYSTACK’S GOALS 

 High throughput and low latency 
  Have to put up with (very frequent) requests 
  Photos served quickly to facilitate a good user experience 

 Fault-tolerant 
  Users should not experience errors despite inevitable 

server crashes and hard drive failures 
  Photos replicated and brought back quickly 

 Cost-effective 
  Cost of terabyte of usable storage 
  Read rate normalized for each terabyte of storage 

 Simple 
  Obviously, the simpler, the better! 



DESIGN 

 Use a CDN to serve popular images 
 Leverage Haystack to respond to photo requests 

in long tail efficiently 
  Store multiple photos in a single file and handle large 

files efficiently 

  3 Core Components  
  Haystack Store 
  Haystack Directory 
  Haystack Cache 



HAYSTACK’S DESIGN 



HAYSTACK DIRECTORY 

 Maintains mappings from logical to physical volumes 
  Used for constructing image URLs 

http://<CDN>/<Cache>/<Machine ID>/<Logical volume,Photo> 

 Balances writes across logical volumes and reads across 
physical volumes 

 Determines whether a photo request should be handled  
by the CDN or by the Cache 

  Identifies read-only logical volumes 
  Machine is marked read-only when it exhausts its capacity or 

for operational reasons 



HAYSTACK CACHE 

 Functions as an internal CDN 
 A newly retrieved photo is cached iff  

  Request comes directly from a user and not the 
CDN  
 Post-CDN caching is ineffective 

  Photo is fetched from a write enabled Store 
machine 
 Shelter write-enabled Store machines photos are most 

heavily accessed soon after they are uploaded  
 Haystack performs better when doing either reads or 

writes 



HAYSTACK STORE 

 Encapsulates the storage system for photos 
 Organized by physical volumes 

  10 terabytes of physical storage split into 100 
physical volumes 100 gigabytes each 

 Physical volumes on different machines grouped 
into logical volumes 
  A photo saved to a logical volume is written to all 

corresponding physical volumes 

 Performs basic operations 
  Read 
  Write 
  Delete 



PHYSICAL VOLUME LAYOUT 

 Store machine represents a physical volume as a 
large file consisting of a superblock followed by a 
sequence of needles 
  Think of a physical volume as a very large file (100 

GB) saved as ‘/hay/haystack <logical volume id>’  

 Each needle represents a photo stored in Haystack 
  Uniquely identified by  

<Offset, Key, Alternate Key, Cookie> 



LAYOUT OF HAYSTACK STORE FILE 



PHOTO READ 

 Cache machine requests a photo it supplies the 
logical volume id, key, alternate key, and cookie  
  Cookie’s value is randomly assigned by and stored in the 

Directory at the time that the photo is uploaded 
  Used to eliminates attacks aimed at guessing valid 

URLs for photos 

 Store machine looks up the relevant metadata in 
its in-memory mappings.  
  Checks if it is not deleted 
  Seeks to the appropriate offset in the volume file 
  Reads the entire needle from disk  
  Verifies the cookie and the integrity of the data 
  Returns the photo if checks passed 



PHOTO WRITE 

 Haystack web servers provide: 
  Logical volume id, key, alternate key, cookie, and data 

to Store machines 

 Each machine synchronously appends needle 
images to its physical volume files and updates 
in-memory mappings as needed 

 Volumes are append-only so photos can only be 
modified by adding an updated needle with the 
same key and alternate key 
  Different logical volume: the Directory updates its 

application metadata and future requests will never 
fetch the older version   

  Same logical volume: duplicated distinguished based on 
their offsets: highest offset =latest version  



UPLOADING A PHOTO 



PHOTO DELETE 

 Very straightforward 
  Sets the delete flag in both the in-memory mapping 

and synchronously in the volume file 

 Space occupied by deleted needles is lost for some 
time and reclaimed later via compaction 
  Online operation that reclaims the space used by 

deleted and duplicate needles  
  Needles are copied into a new file and the new file 

replaced the current file 

 The pattern for deletes is similar to photo views 
  Young photos are a lot more likely to be deleted  
  ~25% of the photos get deleted / yr 



INDEX FILE 

 Store machines maintain an index file for each of 
their volumes 

 Checkpoint of the inmemory data structures used 
to locate needles efficiently on disk 

 Used to quickly reconstruct in-memory mappings 
shortening restart time 

  Index is usually less than 1% the size of the store 
file 



LAYOUT OF HAYSTACK INDEX FILE 



RESULTS 

 The point was to store metadata in memory but 
before Haystack it was too costly 

 Haystack overhead 
  Average 10 bytes of main memory per photo 
  Each photo is scaled to four photos with the same key 

(64 bits), different alternate keys (32 bits), and 
different data sizes (16 bits). 

  In addition, 2 bytes per image in overheads due to 
hash tables, bringing the total for four scaled photos 
of the same image to 40 bytes 

 For comparison, xfs inode t structure in Linux is 
536 bytes 



RESULTS CONT. 

 Significantly less disk operations 
  At most one per photo 

 Simplified metadata  
  Less costly lookups 
  Easily cachable 
  1MB of metadata for every 1GB of usable storage 
  10TB per node results in 10GB metadata 

 Cost per terabyte of usable storage:  
  Haystack costs 28% less 

 Read rate normalized for each terabyte of usable 
storage 
  Processes 4x more reads per second than an 

equivalent terabyte on a NAS appliance 



DAILY PHOTO TRAFFIC 



EVALUATION (STORE) 

• Two benchmarks: Randomio (external) and Haystress (custom built) 
• Haystack delivers 85% of the raw throughput of the device while 
incurring only 17% higher latency (workload A: rnd read of 64KB) 
• Multi-writes of 4 and 16 writes improves throughput by 30% and 70% 
respectivly  



EVALUATION (STORE) 

• Multi-write latency fairly low (1 and 2 ms) and stable (variable traffic) 
• Reads on a read-only box latency fairly stable;  
• Write-enable: higher latency 



EVALUATION (DIRECTORY) 

Directory balances (very effectively) reads and writes across Stores 



EVALUATION (CACHE) 

Notice the high hit rate: ~80%. Why? 



Q&A! 



THANK YOU! 


