
FINDING A NEEDLE IN HAYSTACK:
FACEBOOK’S PHOTO STORAGE
D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel,
Facebook Inc.

CPCS 722: Advanced Systems Seminar

Ewa Syta

PLAN FOR TODAY

 Facebook and Photos
 Why a new system was needed?

  Old system and issues faced by Facebook

 Haystack Design
 Evaluation
 Q&A

FACEBOOK & PHOTOS IN NUMBERS*

 So far 65 billion photos uploaded
  Biggest photo sharing website in the world

 One billion new photos uploaded each week
  ~60 terabytes of data

 One million images per second at peak
 For each photo FB generates and stores four

images
  >260 billion images
  > 20 petabytes of data

*As of 2010

HOW FACEBOOK PHOTOS ARE USED?

 Profile pictures and pictures recently uploaded
  Very frequently accessed right after being uploaded
  Likely to be accessed by different users
  More likely to be deleted
  Likely to be cached

 Album photos and older photos
  Less popular but still frequently accessed
  Often requested in a sequence by the same user
  So called ‘long tail’
  Likely not to be in cache and to be retrieved from the

storage hosts
  So… Why not to cache all of the photos?

TYPICAL DESIGN

1.  Browser sends an HTTP request
2.  URL for the browser to render
3.  For each image there is a URL directing the browser to a

location from which to download the data: for popular sites
this URL often points to a CDN (Content Delivery Network):
-  If the CDN has it, it responds immediately
-  If not, CDN examines the URL and retrieves the photo from site

storage system and updates its cached data

FACEBOOK’S OLD NFS-BASED DESIGN

OLD NFS-BASED DESIGN

 Each photo stored in its own file on a set of
commercial NAS-appliances

 Photo Store Severs (PSS) mount all volumes
exported by NAS appliances over NFS

 PSS process HTTP requests for images:
  Extracts the volume and full path to the file from an

image’s URL
  Reads the data over NFS
  Returns the result to CDN

 Thousands of files stored in each directory of
NFS volumes
  Excessive directory metadata

OLD DESIGN’S ISSUES

 Excessive number of disk operations because of
metadata lookups

 Most of metadata not used for photos
  Waste of storage capacity
  Requires disk read operations to find the file itself

 Several (~10) disk operations necessary to read a
single photo

 The key problem: disk operations

FIRST FIX TO REDUCE DISK OPERATIONS

 Reduce directory sizes to hundreds of images per
directory

 ~3 disk operations per image
  (1) read the directory metadata into memory, (2) load the

inode, (3) read the file contents

SECOND FIX

 Let PSS explicitly cache file handles returned by NAS
 Only a minor improvement
 Focusing only on caching has limited impact

FINALLY… THE HAYSTACK!

 No viable solution based on existing systems
  Existing systems lack the ‘right’ RAM-to-disk ratio
  Right ratio? Enough main memory to hold all of the

filesystem metadata?
  One photo corresponds to one file and each file

requires at least one inode, which is hundreds of
bytes large… Do the math.

 Facebook decided to build their own storage
system
  (not-too) surprising

HAYSTACK’S GOALS

 High throughput and low latency
  Have to put up with (very frequent) requests
  Photos served quickly to facilitate a good user experience

 Fault-tolerant
  Users should not experience errors despite inevitable

server crashes and hard drive failures
  Photos replicated and brought back quickly

 Cost-effective
  Cost of terabyte of usable storage
  Read rate normalized for each terabyte of storage

 Simple
  Obviously, the simpler, the better!

DESIGN

 Use a CDN to serve popular images
 Leverage Haystack to respond to photo requests

in long tail efficiently
  Store multiple photos in a single file and handle large

files efficiently

  3 Core Components
  Haystack Store
  Haystack Directory
  Haystack Cache

HAYSTACK’S DESIGN

HAYSTACK DIRECTORY

 Maintains mappings from logical to physical volumes
  Used for constructing image URLs

http://<CDN>/<Cache>/<Machine ID>/<Logical volume,Photo>

 Balances writes across logical volumes and reads across
physical volumes

 Determines whether a photo request should be handled
by the CDN or by the Cache

  Identifies read-only logical volumes
  Machine is marked read-only when it exhausts its capacity or

for operational reasons

HAYSTACK CACHE

 Functions as an internal CDN
 A newly retrieved photo is cached iff

  Request comes directly from a user and not the
CDN
 Post-CDN caching is ineffective

  Photo is fetched from a write enabled Store
machine
 Shelter write-enabled Store machines photos are most

heavily accessed soon after they are uploaded
 Haystack performs better when doing either reads or

writes

HAYSTACK STORE

 Encapsulates the storage system for photos
 Organized by physical volumes

  10 terabytes of physical storage split into 100
physical volumes 100 gigabytes each

 Physical volumes on different machines grouped
into logical volumes
  A photo saved to a logical volume is written to all

corresponding physical volumes

 Performs basic operations
  Read
  Write
  Delete

PHYSICAL VOLUME LAYOUT

 Store machine represents a physical volume as a
large file consisting of a superblock followed by a
sequence of needles
  Think of a physical volume as a very large file (100

GB) saved as ‘/hay/haystack <logical volume id>’

 Each needle represents a photo stored in Haystack
  Uniquely identified by

<Offset, Key, Alternate Key, Cookie>

LAYOUT OF HAYSTACK STORE FILE

PHOTO READ

 Cache machine requests a photo it supplies the
logical volume id, key, alternate key, and cookie
  Cookie’s value is randomly assigned by and stored in the

Directory at the time that the photo is uploaded
  Used to eliminates attacks aimed at guessing valid

URLs for photos

 Store machine looks up the relevant metadata in
its in-memory mappings.
  Checks if it is not deleted
  Seeks to the appropriate offset in the volume file
  Reads the entire needle from disk
  Verifies the cookie and the integrity of the data
  Returns the photo if checks passed

PHOTO WRITE

 Haystack web servers provide:
  Logical volume id, key, alternate key, cookie, and data

to Store machines

 Each machine synchronously appends needle
images to its physical volume files and updates
in-memory mappings as needed

 Volumes are append-only so photos can only be
modified by adding an updated needle with the
same key and alternate key
  Different logical volume: the Directory updates its

application metadata and future requests will never
fetch the older version

  Same logical volume: duplicated distinguished based on
their offsets: highest offset =latest version

UPLOADING A PHOTO

PHOTO DELETE

 Very straightforward
  Sets the delete flag in both the in-memory mapping

and synchronously in the volume file

 Space occupied by deleted needles is lost for some
time and reclaimed later via compaction
  Online operation that reclaims the space used by

deleted and duplicate needles
  Needles are copied into a new file and the new file

replaced the current file

 The pattern for deletes is similar to photo views
  Young photos are a lot more likely to be deleted
  ~25% of the photos get deleted / yr

INDEX FILE

 Store machines maintain an index file for each of
their volumes

 Checkpoint of the inmemory data structures used
to locate needles efficiently on disk

 Used to quickly reconstruct in-memory mappings
shortening restart time

  Index is usually less than 1% the size of the store
file

LAYOUT OF HAYSTACK INDEX FILE

RESULTS

 The point was to store metadata in memory but
before Haystack it was too costly

 Haystack overhead
  Average 10 bytes of main memory per photo
  Each photo is scaled to four photos with the same key

(64 bits), different alternate keys (32 bits), and
different data sizes (16 bits).

  In addition, 2 bytes per image in overheads due to
hash tables, bringing the total for four scaled photos
of the same image to 40 bytes

 For comparison, xfs inode t structure in Linux is
536 bytes

RESULTS CONT.

 Significantly less disk operations
  At most one per photo

 Simplified metadata
  Less costly lookups
  Easily cachable
  1MB of metadata for every 1GB of usable storage
  10TB per node results in 10GB metadata

 Cost per terabyte of usable storage:
  Haystack costs 28% less

 Read rate normalized for each terabyte of usable
storage
  Processes 4x more reads per second than an

equivalent terabyte on a NAS appliance

DAILY PHOTO TRAFFIC

EVALUATION (STORE)

• Two benchmarks: Randomio (external) and Haystress (custom built)
• Haystack delivers 85% of the raw throughput of the device while
incurring only 17% higher latency (workload A: rnd read of 64KB)
• Multi-writes of 4 and 16 writes improves throughput by 30% and 70%
respectivly

EVALUATION (STORE)

• Multi-write latency fairly low (1 and 2 ms) and stable (variable traffic)
• Reads on a read-only box latency fairly stable;
• Write-enable: higher latency

EVALUATION (DIRECTORY)

Directory balances (very effectively) reads and writes across Stores

EVALUATION (CACHE)

Notice the high hit rate: ~80%. Why?

Q&A!

THANK YOU!

