
FINDING A NEEDLE IN HAYSTACK:
FACEBOOK’S PHOTO STORAGE
D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel,
Facebook Inc.

CPCS 722: Advanced Systems Seminar

Ewa Syta

PLAN FOR TODAY

 Facebook and Photos
 Why a new system was needed?

  Old system and issues faced by Facebook

 Haystack Design
 Evaluation
 Q&A

FACEBOOK & PHOTOS IN NUMBERS*

 So far 65 billion photos uploaded
  Biggest photo sharing website in the world

 One billion new photos uploaded each week
  ~60 terabytes of data

 One million images per second at peak
 For each photo FB generates and stores four

images
  >260 billion images
  > 20 petabytes of data

*As of 2010

HOW FACEBOOK PHOTOS ARE USED?

 Profile pictures and pictures recently uploaded
  Very frequently accessed right after being uploaded
  Likely to be accessed by different users
  More likely to be deleted
  Likely to be cached

 Album photos and older photos
  Less popular but still frequently accessed
  Often requested in a sequence by the same user
  So called ‘long tail’
  Likely not to be in cache and to be retrieved from the

storage hosts
  So… Why not to cache all of the photos?

TYPICAL DESIGN

1.  Browser sends an HTTP request
2.  URL for the browser to render
3.  For each image there is a URL directing the browser to a

location from which to download the data: for popular sites
this URL often points to a CDN (Content Delivery Network):
-  If the CDN has it, it responds immediately
-  If not, CDN examines the URL and retrieves the photo from site

storage system and updates its cached data

FACEBOOK’S OLD NFS-BASED DESIGN

OLD NFS-BASED DESIGN

 Each photo stored in its own file on a set of
commercial NAS-appliances

 Photo Store Severs (PSS) mount all volumes
exported by NAS appliances over NFS

 PSS process HTTP requests for images:
  Extracts the volume and full path to the file from an

image’s URL
  Reads the data over NFS
  Returns the result to CDN

 Thousands of files stored in each directory of
NFS volumes
  Excessive directory metadata

OLD DESIGN’S ISSUES

 Excessive number of disk operations because of
metadata lookups

 Most of metadata not used for photos
  Waste of storage capacity
  Requires disk read operations to find the file itself

 Several (~10) disk operations necessary to read a
single photo

 The key problem: disk operations

FIRST FIX TO REDUCE DISK OPERATIONS

 Reduce directory sizes to hundreds of images per
directory

 ~3 disk operations per image
  (1) read the directory metadata into memory, (2) load the

inode, (3) read the file contents

SECOND FIX

 Let PSS explicitly cache file handles returned by NAS
 Only a minor improvement
 Focusing only on caching has limited impact

FINALLY… THE HAYSTACK!

 No viable solution based on existing systems
  Existing systems lack the ‘right’ RAM-to-disk ratio
  Right ratio? Enough main memory to hold all of the

filesystem metadata?
  One photo corresponds to one file and each file

requires at least one inode, which is hundreds of
bytes large… Do the math.

 Facebook decided to build their own storage
system
  (not-too) surprising

HAYSTACK’S GOALS

 High throughput and low latency
  Have to put up with (very frequent) requests
  Photos served quickly to facilitate a good user experience

 Fault-tolerant
  Users should not experience errors despite inevitable

server crashes and hard drive failures
  Photos replicated and brought back quickly

 Cost-effective
  Cost of terabyte of usable storage
  Read rate normalized for each terabyte of storage

 Simple
  Obviously, the simpler, the better!

DESIGN

 Use a CDN to serve popular images
 Leverage Haystack to respond to photo requests

in long tail efficiently
  Store multiple photos in a single file and handle large

files efficiently

  3 Core Components
  Haystack Store
  Haystack Directory
  Haystack Cache

HAYSTACK’S DESIGN

HAYSTACK DIRECTORY

 Maintains mappings from logical to physical volumes
  Used for constructing image URLs

http://<CDN>/<Cache>/<Machine ID>/<Logical volume,Photo>

 Balances writes across logical volumes and reads across
physical volumes

 Determines whether a photo request should be handled
by the CDN or by the Cache

  Identifies read-only logical volumes
  Machine is marked read-only when it exhausts its capacity or

for operational reasons

HAYSTACK CACHE

 Functions as an internal CDN
 A newly retrieved photo is cached iff

  Request comes directly from a user and not the
CDN
 Post-CDN caching is ineffective

  Photo is fetched from a write enabled Store
machine
 Shelter write-enabled Store machines photos are most

heavily accessed soon after they are uploaded
 Haystack performs better when doing either reads or

writes

HAYSTACK STORE

 Encapsulates the storage system for photos
 Organized by physical volumes

  10 terabytes of physical storage split into 100
physical volumes 100 gigabytes each

 Physical volumes on different machines grouped
into logical volumes
  A photo saved to a logical volume is written to all

corresponding physical volumes

 Performs basic operations
  Read
  Write
  Delete

PHYSICAL VOLUME LAYOUT

 Store machine represents a physical volume as a
large file consisting of a superblock followed by a
sequence of needles
  Think of a physical volume as a very large file (100

GB) saved as ‘/hay/haystack <logical volume id>’

 Each needle represents a photo stored in Haystack
  Uniquely identified by

<Offset, Key, Alternate Key, Cookie>

LAYOUT OF HAYSTACK STORE FILE

PHOTO READ

 Cache machine requests a photo it supplies the
logical volume id, key, alternate key, and cookie
  Cookie’s value is randomly assigned by and stored in the

Directory at the time that the photo is uploaded
  Used to eliminates attacks aimed at guessing valid

URLs for photos

 Store machine looks up the relevant metadata in
its in-memory mappings.
  Checks if it is not deleted
  Seeks to the appropriate offset in the volume file
  Reads the entire needle from disk
  Verifies the cookie and the integrity of the data
  Returns the photo if checks passed

PHOTO WRITE

 Haystack web servers provide:
  Logical volume id, key, alternate key, cookie, and data

to Store machines

 Each machine synchronously appends needle
images to its physical volume files and updates
in-memory mappings as needed

 Volumes are append-only so photos can only be
modified by adding an updated needle with the
same key and alternate key
  Different logical volume: the Directory updates its

application metadata and future requests will never
fetch the older version

  Same logical volume: duplicated distinguished based on
their offsets: highest offset =latest version

UPLOADING A PHOTO

PHOTO DELETE

 Very straightforward
  Sets the delete flag in both the in-memory mapping

and synchronously in the volume file

 Space occupied by deleted needles is lost for some
time and reclaimed later via compaction
  Online operation that reclaims the space used by

deleted and duplicate needles
  Needles are copied into a new file and the new file

replaced the current file

 The pattern for deletes is similar to photo views
  Young photos are a lot more likely to be deleted
  ~25% of the photos get deleted / yr

INDEX FILE

 Store machines maintain an index file for each of
their volumes

 Checkpoint of the inmemory data structures used
to locate needles efficiently on disk

 Used to quickly reconstruct in-memory mappings
shortening restart time

  Index is usually less than 1% the size of the store
file

LAYOUT OF HAYSTACK INDEX FILE

RESULTS

 The point was to store metadata in memory but
before Haystack it was too costly

 Haystack overhead
  Average 10 bytes of main memory per photo
  Each photo is scaled to four photos with the same key

(64 bits), different alternate keys (32 bits), and
different data sizes (16 bits).

  In addition, 2 bytes per image in overheads due to
hash tables, bringing the total for four scaled photos
of the same image to 40 bytes

 For comparison, xfs inode t structure in Linux is
536 bytes

RESULTS CONT.

 Significantly less disk operations
  At most one per photo

 Simplified metadata
  Less costly lookups
  Easily cachable
  1MB of metadata for every 1GB of usable storage
  10TB per node results in 10GB metadata

 Cost per terabyte of usable storage:
  Haystack costs 28% less

 Read rate normalized for each terabyte of usable
storage
  Processes 4x more reads per second than an

equivalent terabyte on a NAS appliance

DAILY PHOTO TRAFFIC

EVALUATION (STORE)

• Two benchmarks: Randomio (external) and Haystress (custom built)
• Haystack delivers 85% of the raw throughput of the device while
incurring only 17% higher latency (workload A: rnd read of 64KB)
• Multi-writes of 4 and 16 writes improves throughput by 30% and 70%
respectivly

EVALUATION (STORE)

• Multi-write latency fairly low (1 and 2 ms) and stable (variable traffic)
• Reads on a read-only box latency fairly stable;
• Write-enable: higher latency

EVALUATION (DIRECTORY)

Directory balances (very effectively) reads and writes across Stores

EVALUATION (CACHE)

Notice the high hit rate: ~80%. Why?

Q&A!

THANK YOU!

